

Recent status of the Dark Matter search with EDELWEISS

Valentin Kozlov for the EDELWEISS collaboration

Institute for Nuclear Physics, Karlsruhe Institute of Technology

8th Patras Workshop on Axions, WIMPs and WISPs Chicago and Fermilab 18-22 July 2012

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Edelweiss: search for WIMPs @ LSM (France)

band E=90%

200

150

Ge-bolometers of (F)ID-type

2

- Simultaneous measurement • Heat @ 18 mK with Ge/NTD thermometer
 - Ionization @ few V/cm
- Evt by evt identification of the recoil by ratio Q=E_{ionization}/E_{recoil} for electron recoil • Q=1
 - Q≈0.3 for nuclear recoil

1.5

Edelweiss-2 (3) experimental set-up

- Edelweiss-3 goal $\sigma_{\chi-n}$ = a few·10⁻⁹ pb
- Cryogenic installation (18 mK) :
 - Reversed geometry cryostat
 - Can host up to 40 kg of detectors

Shieldings :

- Clean room + deradonized air
- Active muon veto (>98% coverage)
- PE shield 50 cm (EDW-3: +internal PE)
- Lead shield 20 cm

(Many) others :

- Remotely controlled sources for calibrations + regenerations
- Radon detector down to few mBq/m³
- thermal neutron monitoring (He³ det.)
- study of muon induced neutrons (liquid scintillator 1 m³ neutron counter)

18 cool-downs operated since 2006

Edelweiss-2 setup: View from ,inside'

Edelweiss-2 setup: View from ,inside/

Cryostat: inside

InterDigitized (ID) design: surface evt rejection

Surface events rejection:

intentional ²¹⁰Pb source: 6 x 10⁴ events total requiring no signal on veto electrodes: 1 event left

- → rejection factor for surface events of 6 x 10⁻⁵ (90% CL)
- → In case of *no other background*: $\sigma_{SI} \sim 4 \times 10^{-10} \text{ pb}$ (90% CL, M χ = 70 GeV/c²)

Broniatowski et al. Phys Lett B 681 (2009) 305; arXiv:0905.0753

ID-detectors: γ rejection & fiducial volume

Gamma rejection

¹³³Ba calibration data: fiducial only evts

 1.82×10^5 events with 20 < E < 200 keV (3.5×10^5 in total)

6 events ("anomalous")

 $\rightarrow \gamma$ -rejection factor of 3 x 10⁻⁵ NR / γ

Bamma rejection

- **Fiducial volume (ID400)**: 166 ± 6 g => 160 g : primarily limited by the guard region
- → Measurement with cosmogenic lines: ⁶⁸Ge + ⁶⁵Zn
- → Consistent with neutron calibration data
- Consistent with electrostatic model estimation

WIMP search : E_R>20keV (2008+2009+2010)

- 10 ID 400-g detectors
- Total exposure : 427 kg.d
- in 90% NR band, i.e. WIMP Rol : 384 kg.d
- 5 events observed: 4 with E < 22.5 keV
 1 with E = 172 keV
- Expected background < 3 (90% CL)</p>

WIMP Halo: local density of 0.3 GeV/c² Maxwellian velocity distribution $v_{rms} = 270$ km/s $v_{Earth} = 235$ km/s $v_{escape} = 544$ km/s

 $\sigma_{SI} < 4.4 \text{ x } 10^{-8} \text{ pb} (90\% \text{ CL}), M\chi = 85 \text{ GeV}$

EDELWEISS + CDMS combined limits

- The use of the same target material allows simple combination of data.
- Simple merger of data sets was chosen prior to any analysis.
- EDW: 384 kg.d, [20, 200keV], 5 evts CDMS: ~379 kg.d, [~10, 100keV], 4 evts
- Other methods have also been tested (see paper).
- ~50% gain at high WIMP masses.

Phys. Rev. D 84, 011102 (2011); arXiv: 1105.3377

WIMP search: Low mass (1)

arXiv:1207.1815v1

- New independent analysis E_R < 20 keV
- Select ID detectors sensitive to nuclear recoils down to 5 keV
- General strategy to select the data set :
 - Keep 4 detectors with sub-keV ionisation and heat baseline resolutions
 - Remove noisy periods
 - χ² based cut
 - Exclude coincidences (muon veto, other bolometers)
 - Fiducial cut based on ionisation signal energy independent
- Best energy estimator to search for nuclear recoils near the threshold:

$$E_{heat} = \frac{E_{rec}}{1 + V/3} \left(1 + \frac{V}{3} Q_n(E_{rec}) \right), \quad Q_n(E_{rec}) = 0.16 E_{rec}^{0.18}$$

O.Marteneau et al. NIM A530 (2004) 426

Efficiency loss due to the online trigger (*f*(noise)):

$$\varepsilon_{online} = 0.5 \left(1 + Erf\left(\left(E_{rec} - E_{thresh} \right) / \sigma \sqrt{2} \right) \right)$$

(tested with gamma calibration on Compton plateau)

→ Good trigger efficiency @ low energy : 78 % @ 5 keVnr, 90 % @ 6.3 keVnr

WIMP search: Low mass (2)

Use *lonization signal* for:

- Fiducial selection
 - No signal on veto and guard electrodes
 - No difference between fiducial electrodes
- Construct (E_{heat}, E_{ion}) plane :
 - residual fiducial gamma background along: $E_{ion} = E_{rec} \left(1 + Q_n (E_{rec}) V/3\right) / (1 + V/3)$
 - width is defined by $\sigma_{\text{ion}},\,\sigma_{\text{heat}}$ (independent)
- Define "WIMP search box" in the (E_{heat}, E_{ion}) plane for each WIMP mass and detector based on: - 90% of WIMP signal density, $\rho(E_{rec}, E_{ion})$
 - below 95% gamma rejection cut

WIMP search: Low mass, results

- Total fiducial exposure : 113 kg.d
- 3 evts observed in the WIMP box (one event for $M\chi = 10 \text{ GeV}$)
- Estimated background (5-20 keV):
 - Neutron < 1.7 evt, most probable 1.0 evt (based on Monte-Carlo + activity meas.)

ŝ

- Gamma < 1.2 evt
- Limits on σ_{SI} derived from Poisson statistics
- Significantly extends EDW limits for $M\chi = 7-30$ GeV
- Good rejection of surface events!

Towards EDELWEISS-3 (goals 2013)

 CoGeNT, 2011 CoGeNT, 2010
 CDMS II , 2010
 DAMA/LIBRA, 2008, 2σ
 CRESST II, 2011, 1–σ CRESST II, 2011, 2–σ
 EDELWEISS II, 2011, 384kg-d and lowmass: 113kg-d; arXiv1207.1815
 CDMS–EDELWEISS, 2011combined
 XENON100, 2011, 100.9 live days
 XENON100, 2012, 225 live days

Edelweiss-3 goals:

- 3000 kg·d exposure (2013)
- σ_{χ-n} = 5·10⁻⁹ pb
- 40 FID800 detectors (24 kg fiducial)
- Explore low mass region
- Reduced background

Programme under way, funded.

EDELWEISS-3 : new FID800

FID800

*

Infrastructure improvements

Within the Edelweiss-2 setup:

- upgrades of muon veto, cryogenics, cabling, shielding
- Improved material selection
- Extra internal PE shield.

Background (20 – 200 keV)	EDW-2 (evt / kg.d)	EDW-3 (evt / kg.d)
Gamma rate	82	14 – 44
Ambient neutrons	(2.6 - 8.1)·10 ⁻³ mainly due to cables and connectors	(0.8 – 1.9)·10 ⁻⁴
Muon-induced neutrons	< 1·10 ⁻³	< 2.10-4

- Modify electronics and DAQ (scalability): 240 channels + auxiliary detectors
- New event-based readout
- More analysis tools
 Kdata: ROOT-based, multi-tier, db, ...

μ-induced background study

V.Yu. Kozlov | Dark matter search with EDELWEISS | Patras 2012, Chicago,

Astro Part 34 (2010) 97; arXiv:1006.3098

EURECA, LSM extension

- # Background 10-3 evt/kg/yr
- # 150 kg \rightarrow 1 ton Cryo detector; 2
- 2015 (150kg) 2018 (1 ton)
- # Multi-target (Ge, CaWO₄)
- # CRESST + EDELWEISS + ROSEBUD + ... ;

2 experiments (**different nuclei, different techniques**), e.g. **1 bolometric**, 1 noble liquid;

Summary & Outlook

- EDELWEISS-2 final analysis of one year (2009-2010):
 4.4.10⁻⁸ pb, eff. exposure: 384 kg.d
 Phys L
- EDELWEISS-2 data are combined with CDMS
- Low WIMP mass analysis:
 1.0·10⁻⁵ pb for Mχ=10 GeV, eff.exposure: 113 kg.d
- EDELWEISS-3 scientific goal is a few 10⁻⁹ pb
 e.g. 5·10⁻⁹ pb, eff. exposure of 3000 kg.d (125 live days in 2013);
- New Ge-FID800 (600g fiducial), improved background rejection
- Upgrades of the set-up and DAQ
- Various background studies
- → Road to 1 ton experiment, EURECA

Großgeräte der physikalischen Grundlagenforschung

Alliance for Astroparticle Physics

Phys. Rev. D 84, 011102 (2011)

arXiv:1207.1815v1

Institute for Nuclear Physics

The EDELWEISS Collaboration

≈ 50 persons (30 FTE);
11 PhD students;
5 post-docs;
4 countries

- CEA Saclay (IRFU & IRAMIS)
- CSNSM Orsay
- IPN Lyon
- Institût Néel Grenoble
- KIT Karlsruhe (IKP, IEKP, IPE)
- JINR Dubna
- Oxford University
- Sheffield University

- Detectors, electronics, aquistion, data handling, analysis
- Detectors, cabling, cryogenics
- Electronics, cabling, low radioactivity, analysis, detectors, cryo
- Cryogenics, electronics
- Vetos, neutron detector, background, analysis, electronics
- Background, neutron, radon monitors
- · Detectors, cabling, cryogenics, analysis
- MC simulations

Backup slides

BACKUP SLIDES

EDW-2 background: neutrons from rock & materials

Source	Material	Neutron events (384 kg \times days)
Hall walls	Rock	< 0.01
Hall walls	Concrete	< 0.1
Shielding	Polyethylene	< 0.01
Shielding	Lead	< 0.08
Support	Stainless steel	< 0.01
Support	Mild steel	< 0.04
Warm electronics	PCB	1.0 ± 0.5
1K connectors	Aluminium	0.5 ± 0.2
Thermal screens, crystal supports	Copper	< 0.1
Coaxial cables	PTFE	< 0.5
Crystal holders	PTFE	< 0.01
Electrodes	Aluminium	< 0.01
Total		<3.1