The International Axion Observatory (IAXO) 8th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA

Lawrence Livermore National Laboratory

LLNL-PRES-566177

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

- Solar Axion Searches
- The International Axion Observatory (IAXO)
 - Magnet ____
 - X-ray optics for IAXO
 - Low-background detectors for IAXO
 - Prototype Testing
- IAXO Prospects
 - Sensitivity Prospects
 - Collaboration and Schedule
- Conclusions

Solar Axion Searches

- → 1st generation: Brookhaven Experiment
 → 2nd generation: Tokyo Helioscope
 - \rightarrow 3rd generation: CAST
- IAXO = 4th generation axion helioscope
- Based on the more than a decade CAST experience!!
- CAST is established as a reference result in experimental axion physics
- No other technique can realistically improve CAST in such a wide mass range.
- No miracle needed! IAXO builds on CAST innovations to improve the helioscope technique...

IAXO – How to improve sensitivity

IAXO – How to improve sensitivity

Parameter	Unit	CAST-I	Scenario 1	Scenario 2	Scenario 3	Scenario 4
В	Т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
b	$\frac{10^{-5} \text{ c}}{\text{keV cm}^2 \text{ s}}$	~ 4	3×10^{-2}	10^{-2}	3×10^{-3}	10^{-3}
ϵ_d		0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
f^*		1	1.6×10^3	9.8×10^3	6.3×10^4	2.7×10^5

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory J.K.Vogel PATRAS 2012, Chicago 2110 PRES-566177 7/18

Magnet for IAXO

- CAST has one of the best existing magnets than one can "recycle" for axion physics (LHC test magnet)
- Only way to make a step further is to build a new magnet, specifically for axions
- Work ongoing, but best option up to now seems to be a toroidal configuration (similar to ATLAS):
 - Much bigger aperture than CAST: ~0.5-1 m per bore
 - Relatively light (no iron yoke)
 - Bores possibly at room temperature

→ A magnet that looks like a detector magnet with the behavior of an accelerator magnet (little stress, strong field,...)

Magnet for IAXO

- Current IAXO design favors bores between coils
 - FOM •
 - More flexibility
- Scenario 2 conservative, better than scenario 3 is possible \rightarrow Work on further optimization ongoing

Total Radius

Peak field

MFOM

Bore diameter Number of bores

Stored Energy

= 2 m

= 8

= 6 T

= 300

= 600 mm

= 500 MJ

X-ray Optics

- X-ray community put lots of money and effort into development of reflective x-ray optics:
 - HighTech, expensive, unique
 - Excellent imaging capabilities
- Innovations include:
 - Nested designs (i.e. Wolter telescopes)
 - Low-cost substrates
 - Highly reflective coatings
- IAXO optics requirements:
 - Exquisite imaging not needed
 - Need to cover large area:
 → IAXO requires dedicated but cost-effective optics
 - Good throughput (0.3 0.5)
 - Small focal point (~1 cm²)

LLNL-PRES-566177 10/18

X-ray Optics

- Most favored IAXO solution: thermally-formed glass substrates optics
 - Successfully used for NuSTAR
 - Leverage of existing infrastructure
 → Minimize costs & risks
 - Allows for optimization of the reflective coating (multilayers or thin metal films) of each layer

NuSTAR launched 13 June 2012

- Specialized tooling to mirror production and telescope assembly now available
- Hardware can be easily configured to make optics with a variety of designs and sizes
- Key institutes of NuSTAR optics team Columbia, DTU Space, LLNL → All in IAXO!

NuSTAR optics assembly machine

J Koglin *et al., Proc SPIE*, **8147**, (2011) W Craig *et al., Proc SPIE*, **8147**, (2011)

J.K.Vogel

Low-background detectors

Goal

- Micromegas detectors with at least 10⁻⁷ cts/(keV×cm²×s)
- If possible go down to 10⁻⁸ cts/(keV×cm²×s)

Work ongoing

- Experimental tests with current micromegas detectors at CERN, Saclay & Zaragoza
- Underground setup at Canfranc
- Simulation works to build up a background model
- Design a new detector with improvements implemented

Shielding

Radiopure materials

J.K.Vogel

PATRAS 2012, Chicago

Low-background detectors

- Latest Micromegas: Background improved by factor 20
 - Shielding
 - Radiopurity & new manufacturing technique (microbulk readouts)
 - More powerful offline cuts
- Tests in controlled conditions underground at Canfranc:
 - Better shielding coverage
 - Thicker shielding

Backgrounds around 2x10-7 cts/keV/s/cm² with improved shielding ~ 30 × better than CAST

> Recent upgrade of shielding at CAST improves background further towards IAXO!

Lawrence Livermore National Laboratory

J.K.Vogel

PATRAS 2012, Chicago

Pathfinder detector+optics for IAXO

- Small x-ray optics
 - Fabricated purposely using thermally-formed glass substrates (NuSTAR-like)
- Micromegas low background detector:
 - Apply lessons learned from R&D: compactness, better shielding, radiopurity,...
 - Aim for background of 10⁻⁷ cts/(keV×cm²×s) or lower
- Collaboration of key groups: Saclay, Zaragoza, LLNL, DTU, Columbia
 - Operation at CAST in 2013
 - Tests of techniques and acquisition of know-how for IAXO

IAXO sensitivity prospects

Hadronic axion models

- Improvements of factor 8-30 in g_{aγ} (4×10³-1×10⁶ in signal strength!!)
- QCD axions at masses of ~meV seem out of reach even for an improved axion helioscope...

But...

 Non-hadronic axion models provide extra axion emission from the Sun through axionelectron compton and bremsstrahlung processes

IAXO could improve current CAST sensitivity to non-hadronic axions by about 3 orders of magnitude

J.K.Vogel

IAXO sensitivity prospects

Notional plan

- Proto-collaboration formed
 - Most CAST groups
 - New groups + extended expertise (magnet, optics,...)
 - Open for interested groups
- Conceptual design report in preparation, Lol to be submitted to CERN soon
- 4th generation helioscope supported in latest draft of ASPERA roadmap 2011

Conclusions

- CAST is established as a reference result in experimental axion physics
 - CAST PRL2004 most cited experimental paper in axion physics
 - Expertise gathered in magnet, optics, low background detectors, gas systems
 - No other technique can realistically improve CAST in such wide mass range.

IAXO is the new generation helioscope (4th generation) to search for axions

- Good prospects to improve CAST by 1-1.5 orders of magnitude in sensitivity
- First solid steps towards conceptual design
- Together IAXO and haloscopes (ADMX) could explore a big part of the QCD axion model region in the next decade
- Potential for other physics (White Dwarfs, ALPs,...)

Thank you!

