Bubble Chambers for Direct Dark Matter Searches in COUPP

Eric Vázquez Jáuregui

SNOLAB

8th Patras Workshop on Axions, WIMPs and WISPs Chicago IL, USA; July 22, 2012

Collaboration COUPP

M. Ardid¹, E. Behnke², T. Benjamin², M. Bou-Cabo¹, S.J. Brice³, D. Broemmelsiek³, J.I. Collar⁴, P.S. Cooper³, M. Crisler³, C.E. Dahl⁵, J. Hall³, C. Harnish², I. Levine², W.H. Lippincott³, D. Maurya⁶, T. Nania², R. Neilson⁴, S. Priya⁶, E. Ramberg³, A.E. Robinson⁴, A. Sonnenschein³, E. Vázquez Jáuregui⁷

¹Politecnica Valencia ²Indiana University South Bend ³Fermi National Accelerator Laboratory ⁴KICP - University of Chicago ⁵Northwestern University ⁶Virginia Tech 7SNOLAB

THE 🧱 KAVLI FOUNDATION

COUPP bubble chambers

- Target material: superheated CF_3I spin-dependent/independent
- Particles interacting evaporate a small amount of material: bubble nucleation
- Cameras record bubbles
- Piezo sensors detect sound
- Recompression after each event

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles
- The ability to build large chambers cheaply and with a choice of target fluids
- The ability to increase the size of the chambers without changing the size or complexity of the data acquisition
- Sensitivity to spin-dependent and spin-independent WIMP couplings

Bubble nucleation

Dependence of bubble nucleation on the total deposited energy and dE/dx

- Region of bubble nucleation at 15 psig
- Backgrounds: electrons, ²¹⁸Po, ²²²Rn
- Signal processes of Iodine, Fluorine and Carbon nuclear recoils

insensitive to electrons and gammas

COUPP bubble chambers

- Alpha decays: Nuclear recoil and 40 µm alpha track 1 bubble
- Neutrons: Nuclear recoils mean free path ~20 cm 3:1 single-multiple ratio in COUPP 4kg
- WIMPs: Nuclear recoil mean free path $> 10^{12}$ cm 1 bubble

COUPP-4kg

COUPP at **SNOLAB**

SNOLAB

deepest and cleanest large-space international facility in the world

- 2 km underground near Sudbury, Ontario
- ultra-low radioactivity background environment Class 2000
- Physics programme focused on neutrino physics and direct dark matter searches

COUPP at **SNOLAB**

COUPP-4kg features

- Energy: threshold detector
- Background suppression:
 - UG at SNOLAB
 - Water shielding
 - -Clean materials: almost there
- Background discrimination:
 - -Neutrons: multiples bubbles Nuclear recoil, $l \sim 20~{\rm cm}$
 - $-\alpha$: acoustic parameter Nuclear recoil, 40 μ m track
- Large target mass: getting there

Eric Vázquez-Jáuregui

- Thermodynamics: two temperature sensors and pressure transducers
- Fast AC-coupled pressure transducer for bubble growth
- Four lead zirconate piezoelectric acoustic transducers
- Two VGA resolution CCD cameras (20-degree stereo angle, 100 frames per second)
- Main trigger: frame-to-frame differences
 - compression within 20 ms of a bubble nucleation
 - -500 secs of expansion without a bubble \longrightarrow compress to 215 psia for 30 secs
 - -live-time: starts 30 secs after an expansion

COUPP-4kg at SNOLAB

- Installation in summer 2010
- Physics run begins Nov. 3, 2010
- Run settings (P=30.5 psia):
 - -17.4 days at 8 keV (39^oC)
 - -21.9 days at 10 keV (36^oC)
 - -97.3 days at 15 keV (33.5^oC)
- 4.048 kg of CF_3I
- Calibrations:
 - -12 neutron calibration runs: AmBe and ^{252}Cf
 - Continuous source of 222 Rn

COUPP-4kg at SNOLAB: data analysis

- Examination of images: algorithm searching for clusters among pixels that changed between consecutive frames
- Examination of pressure rise: fit to the rate of pressure rise by a quadratic time dependence for bubbles in the bulk
- Examination of the acoustic signal

hand-scanned to resolve disagreement

overall efficiency for all data quality and fiducial volume cuts is $82.5 \pm 1.9\%$

COUPP-4kg at SNOLAB

Acoustic transducer signals digitized with a 2.5 MHz sampling rate and recorded for 40 ms for each event

3 ways of counting:

- Images: cameras
- Pressure rise: transducer
- Acoustic parameter: piezos

The nuclear recoil acceptance of the AP cut $95.8 \pm 0.5\%$

Neutron calibrations:

• AmBe

• ²⁵²Cf

Alpha calibration: ²²²Rn

- Test Seitz model threshold
- Absolute bubble nucleation efficiency
- Characterize acoustic signature of α decays

Radon fraction = 0.95 ± 0.05

Eric Vázquez-Jáuregui

GEANT and MCNP simulations

- Bubble rate is 50% higher
- Multiple bubbles rate also higher

- Lower efficiency for $^{19}{\rm F}$ and $~~{\rm SRIM} \rightarrow {\rm TRIM}$ calculation $^{12}{\rm C}$ recoils
- Seitz model for ¹²⁷I recoils

Seitz model:

- 6 keV ¹⁹F recoils in C_4F_{10} (PICASSO)
- 101 keV 218 Po recoils in C_4F_{10} (PICASSO)
- 101 keV 218 Po recoils in CF_3I

Understand efficiency for 15 keV recoils in CF_3I

Measurements have been performed

COUPP-4kg at SNOLAB: results

456 kg-days

2474 alphas 1733 alphas (15 keV data)

5.3 alpha decays/ kg-day 95% from radon

 $> 98.9\% \alpha$ rejection > 99.3% (15 keV data)

20 WIMP candidates

- 6 events at 8 keV
- 6 events at 10 keV (2 triples)
- 8 events at 15 keV (1 double)

Neutrons from rock: < 1/year

COUPP-4kg at SNOLAB: results

Some events with high AP

- 4 events at 8 keV
- $\bullet 2$ events at 10 keV

Clustered: 3 high-AP events in one hour at 8 keV

Significant fraction correlated in time

COUPP-4kg at SNOLAB: results

Internal neutron background

- View-ports: 0.5 ppm 238 U and 0.8 ppm 232 Th (~ 5 events)
- Piezos:

 4.0 ppm ²³⁸U, 1.9 ppm ²³²Th and ²¹⁰Pb
 (~ 2 events)

Fission and (α,n) on light elements

COUPP-4kg at SNOLAB: upgrades

New piezos built (low background salts)

> New view-ports (synthetic silica)

Physics run restarted last month!

COUPP-4kg at SNOLAB: sensitivity

COUPP-4kg at SNOLAB: sensitivity

COUPP-60kg

COUPP-60kg

Engineering run at Fermilab: successful commissioning COUPP-60kg is moving to SNOLAB

• Ready for physics run by the end of this year

Eric Vázquez-Jáuregui

Calibrations

- γ and neutron calibrations
 - -AmBe and ^{252}Cf
 - -⁶⁰Co and ¹³³Ba
- COUPP Iodine Recoil Threshold Experiment
 - -Low energy Iodine recoils
 - $-\pi$ beam and silicon trackers
- 88 Y/Be calibration chamber
 - Understand response to low energy recoils
 - Monochromatic low energy neutrons

COUPP-500kg

- A tonne scale detector
- spin-independent sensitivity $9 \times 10^{-47} cm^2$, backgroundfree year running
- Beyond next generation (G2) device
- $\bullet < 5 \mathrm{M}$ total cost
- Possible to use alternative fluids (C_4F_{10})

R&D phase

COUPP-60kg-500kg expected sensitivity at SNOLAB

COUPP-60kg-500kg expected sensitivity at SNOLAB

Conclusions

- First physics run at SNOLAB completed for COUPP-4kg
 - $-\operatorname{Results}$ submitted for publication
 - -Spin-dependent competitive limit achieved
 - Excellent acoustic alpha rejection
 - Upgraded detector running
- COUPP family of detectors making huge improvements
 - COUPP-60kg getting to SNOLAB, Physics run by the end of the year
 - Calibrations, calibrations and calibrations: CIRTE, $^{88}\mathrm{Y/Be},$...
 - COUPP-500kg is coming fast

Conclusions

- First physics run at SNOLAB completed for COUPP-4kg
 - $-\operatorname{Results}$ submitted for publication
 - -Spin-dependent competitive limit achieved
 - Excellent acoustic alpha rejection
 - Upgraded detector running
- COUPP family of detectors making huge improvements
 - -COUPP-60kg getting to SNOLAB, Physics run by the end of the year
 - Calibrations, calibrations and calibrations: CIRTE, 88 Y/Be, ...
 - COUPP-500kg is coming fast

Stay tuned for more bubbles!