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Outline

* “Microwaves shining through the wall” at CERN
— Hardware setup
— Engineering challenges
— Signal processing

* Searching for Hidden sector photons (HSP), new
exclusion limit

* Searching for ALPs in a magnet



Overview of the HSP setup
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Some of the challenges involved:
* Detecting a microwave signal below -210 dBm (102 W)
* Providing electromagnetic shielding of > 300 dB at 3 GHz within 15 cm

* Keeping both cavities on tune for >11 h



The setup in the laboratory

(A) Emitting cavity
(B) Detecting cavity
(C) EM. Shielding

enclosure, contains
the signal receiver

(D) Custom feed-trough
filter for 230 V mains
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We achieved > 300 dB electromagnetic shielding at 3 GHz within 15
cm distance, that’s a reduction in signal power by a factor of 103°
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See also: M. Betz, F. Caspers, “A microwave paraphoton and axion detection experiment with 300 dB electromagnetic shielding at 3 GHz”, proc. of IPAC 2012



Power [dBm)]

Data processing

* Signal analyser: frequency conversion, digitizing, recording
» Offline python script: Windowing, Fourier Transform (FFT), estimates spectral power

* Important property of the FFT:
Longer time trace (I) = narrower resolution bandwidth (BW,,.) of one frequency bin

* Avg. noise power goes down, signal power stays constant (always within 1 bin)
* We can show: FFT = matched filter for sinusoidal signals = optimum detector
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11.5 h measurement run M. Betz, F. Caspers, 8th Patras, 2012



Data processing: pushing the avg. noise floor

1020 Expected and measured average noise floor
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Data processing: pushing the avg. noise floor

We can detect
microwave
signals below :

-210 dBm
= 1024 W

=1 photon
every 2
seconds

At room
temperature,
without any
cryogenics!
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The signal power stays more or less constant

M. Betz, F. Caspers, 8th Patras, 2012
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Tune of the emitting cavity

Reflected power constantly low
— Cavity is on tune

* |f the cavity is on tune,
reflected power should be
close to zero

e We monitor and record this

during the whole
experimental run

During warm up, the cavity drifts by
= 1 MHz, this is significant!
(3 dB bandwidth = 130 kHz)

the drift is compensated by the
tuning screw manually

Once in thermal equilibrium, the
cavity is stable 8



Tune of the detecting cavity (1)
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The detecting cavity did not have enough time to warm up,
a drift of the tune can be observed, we loose some signal power

M. Betz; The CERN microwave cavity search 2
for axions and paraphotons, Geneva 2012



Tune of the detecting cavity (2)

(LNA = Low
noise amplifier)
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Outline

* Our “microwaves shining through the wall”
setup

e Searching for Hidden sector photons (HSP),
new exclusion limit

e Searching for ALPs in a magnet

M. Betz, F. Caspers, 8th Patras, 2012



First HSP measurement run, March 2012

e 11.5 h reference run with open shielding box
— We expect some EM. leakage
— Proof that our setup is working

— We define a window of +-1.5 mHz
around the observed signal freq.
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M. Betz, F. Caspers, 8th Patras, 2012



First HSP measurement run, March 2012

 11.5 h measurement run with closed shielding box

— peaks within the window do not significantly exceed the
peaks in other parts of the spectrum

— No signal detected = exclusion result
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M. Betz, F. Caspers, 8th Patras, 2012



First HSP measurement run, March 2012

Sampling points for the E-field of the TE,,,

Expressing the result as an exclusion limit: mode for the numerical calculation of G
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3 e er e
frequenpy/ HSP mass and has been .&M:" e
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M. Betz, F. Caspers, 8th Patras, 2012

to Search for Hidden Sector Photons”



First HSP measurement run, March 2012

 We were sensitive enough to improve over
current exclusion limits [1]

-6

my=1.1107eV/c?, y=7610" mm—tp"

-9 | | | I | | I | |
-9 -6 -3 0
Log,,my(eV]
Thanks to J. Jaeckel for the collection of
exclusion plot data

[1] M. Betz, F. Caspers, “A microwave paraphoton and axion detection experiment with

300 dB electromagnetic shielding at 3 GHz”, proc. of IPAC 2012



Outline

* Our “microwaves shining through the wall”
setup

e Searching for Hidden sector photons (HSP),
new exclusion limit

* Searching for ALPs in a magnet

M. Betz, F. Caspers, 8th Patras, 2012



Axion LSW measurements (June 2012)

* We got a 1 week timeslot to use a large 0.5 T magnet in
July

* Things which had to be done before:

— Adjust the cavity couplers to the TM,,, mode at 1.755 GHz,
which couples to ALPs

— Find a new power amplifier for 1.755 GHz

— Construct a smaller secondary shielding enclosure which
fits inside the magnet
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DC feed-through capacitor,
DC can pass, EMI is blocked
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Moving to the magnet hall







Incident RF power: 7.3 W
Avg. reflected power: 0.7 W







Results from the first run

» After the first 4h of recorded data, a surprise

10 Blocks with 48000000 sgpmpigs each. ResBW = 181.7 uHz, DANL = -211.7 dBm

g
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Did the axion finally reveal itself?

M. Betz, F. Caspers, 8th Patras, 2012



Results from the first run

* |t turned out to be just EM. leakage

 The strange modulation came from the RF source,
which struggled to lock to the 10 MHz reference

e Stuffing copper mesh in the seam and using a different
RF source fixed the problem

fun = 1.754770e+09 Hz, res. bw. = 0.003 Hz, Averages = 2
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M. Betz, F. Caspers, 8th Patras, 2012
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Results from the second run

Tune of the detecting cavity

* After another 4h of recorded data o/ m LA IORA o e can bt = 1000 8 puages = WOB
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Results from the second run

expressed as an exclusion limit for ALPs
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http://arxiv.org/abs/0707.2063v1

Conclusion

Only exclusion results so far

All in all, the microwaves shining through a
wall experiment is a success

We got the EMI issues under control and have
a running experiment

World record sensitivity for hidden sector
photons at 10 peV



Pirans ~ (ﬁ))@@@’@'z- Outlook

We need a stronger magnet for the
ALPs search:

We are in contact with Bruker
BioSpin in Karlsruhe

They manufacture and test MRI
magnets

Warm bore = no problems with
power dissipation

Our current setup would fit in a
4.7 T magnet

With some small modifications
we could even use a 9.4 T magnet
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Bonus slides: An EMI stress test

* Isourshielding good enough to do measurements next to an accelerator?
 Can we see any influence from ionizing radiation? [1]

* To do a first test, we operated our setup next to the Antiproton
Decelerator (AD) at CERN

5 - 1019 parasitic pions are injected in the ring every 100 s [2]
— They decay within several turns (10 s) into muons and antineutrinos

— Strong radiation peaks for a few ps, especially in line with the straight
sections, even behind the concrete shielding

— Average radiation level is = 2*background (safe)

Antiproton
Decelerator

(R

Pions decay into muons and antineutrinos

Location
of EMI test

[1] 1. 1. Kalikinski, “On microwave transition radiation”, TECHNICAL PHYSICS VOLUME 43, NUMBER 2 FEBRUARY 1998
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VSA in shielding
enclosure :

Wire loop antenna,
Detecting cavity connected to scope

in secondary . to measure EM|
shielding enclosure




Results

* There is strong pulsed EMI in the hall

EMI pulse dufing injection in the AD ring
Picked up by a 1 m wire loop from the air

= 2.50GS/s @ J 151mv
1M points




Triggered on each injection (radiation peaks),
data taken during 81 injections
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For comparison:
Data taken while the AD was not active (no radiation)

.Sk sescm = Resonant peak of the cavity

(excited by thermal noise)

Rng -20 dBm

Frequency domain (waterfall)

el _ frequency = color = amplitude

Center 1,755 GHz Span 25 MHz
Res BW 10 kHz TimelLen 381.89375 uSec

100.00%

0.40%

2

amplitude
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mY
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The neutrinos and the pulsed This proofs that HSP
ionizing radiation did not measurements next to operational
interfere with the measurement accelerating cavities are feasible

The system is EMI
leak tight



Thank you!
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