MINOS as a WIMP Cannon **Chris J Wallace IPPP, Durham** #### **NORMALLY...** #### **BUT TODAY...** #### **WORK IN COLLABORATION WITH:** MICHAEL SPANNOWSKY * AS SEEN ON TV! ## Outline * A little on WIMPs and a simple model. - * Accessing WIMPs and hidden physics. - ▶ The Energy Frontier LHC bounds. - ▶ The Intensity Frontier MINOS bounds. * Very light mediators - a dipole model. ## Outline * A little on WIMPs and a simple model. - * Accessing WIMPs and hidden on - The Energy Frontier LATC bounds. The Intensity Frontier MINOS bounds. nt mediators - a dipole model. # Hidden sectors are well motivated! - * There is a well motivated search for BSM physics. - * String theory, strong CP problem, Susy, dark matter, ... - ▶ Hidden sectors! - * Weakly Interacting Massive Particles are a good generic DM candidate. - * Popular paradigm WIMPs interact with the SM via a hidden sector mediator. ## Looking for WIMPs * Several approaches to try: * Portals - Higgs, vector, neutrino. * Effective theories/contact interactions. [Fox, Harnik...] $$\frac{1}{M_*^2} \left[\bar{\chi} \gamma_\mu \chi \right] \sum_q \left[\bar{q} \gamma^\mu q \right] \Leftrightarrow$$ [Goodman, Tait...] * Direct coupling. [deNiverville, McKeen, Ritz] * Many interactions already tightly constrained. MUCH MORE WORK, MANY MORE AUTHORS. BUT THESE GUYS COULD BE IN THE AUDIENCE ... :P ## A simple model - * Dirac fermion WIMPs in a hidden sector. - * Light mediator that only allows WIMP quark couplings. Scalar, pseudoscalar, vector, axial vector - * Particular paradigm Light WIMPs (MeV GeV). - * Light mediator always off-shell: $m_V < 2 m_\chi$ ## A simple model - * Dirac fermion WIMPs in a hidden sector. - * Light mediator that only allows WIMP quark couplings. Scalar, pseudoscalar (vector) axial vector - * Particular paradigm Light WIMPs (MeV GeV). - * Light mediator always off shell: $m_V < 2 m_\chi$ * Pretty much by definition: WIMPs are difficult to detect! * The Fermilab way - three physics frontiers: * Pretty much by definition: WIMPs are difficult to detect! * The Fermilab way - three physics frontiers: **ENERGY** COLLIDERS: LHC, TEVATRON * Pretty much by definition: WIMPs are difficult to detect! * The Fermilab way - three physics frontiers: **ENERGY** COLLIDERS: LHC, TEVATRON INTENSITY FIXED TARGETS: LSND, T2K, MINOS * Pretty much by definition: WIMPs are difficult to detect! * The Fermilab way - three physics frontiers: ENERGY COLLIDERS: LHC, TEVATRON INTENSITY FIXED TARGETS: LSND, T2K, MINOS COSMOLOGICAL * Pretty much by definition: WIMPs are difficult to detect! * The Fermilab way - three physics frontiers: ENERGY COLLIDERS: LHC, TEVATRON INTENSITY FIXED TARGETS: LSND, T2K, MINOS # The energy frontier - * High energy to probe small scales/couplings and large masses. - * LHC monojet search (not the only way!). SINGLE JET SCATTERS BACK TO BACK WITH... WHAT? #### *** ICHEP data:** - ▶ Predicted 124,000 ± 4000 monojets. - Observed 124,700 monojets. [Tomorrow: Bjoern Penning] ### **MONOJET BOUNDS** **COUPLING ENTERS TO FOURTH POWER IN CROSS SECTION.** ## The intensity frontier - * Access small couplings using large data sets. - * Fixed targets probe of new physics. [Bjorken, Essig...] - * Proton fixed targets good for light DM. [Batell, Pospelov, Ritz] - * Of the proton fixed target machines, MINOS has the highest beam energy. WHAT'S A FIXED TARGET EXPERIMENT ANYWAY? ### **MINOS** A NEUTRINO FIXED TARGET EXPERIMENT ## **WIMP** creation - * 120 GeV proton beam. ~10^21 POT. - * Stationary graphite target. - * Strong rapidity cut (angle on target ~0.0025 rad). * Process: $$\begin{array}{c|c} P & & \chi \\ \hline & & \chi \\ \hline & & \bar{q} \\ \hline & & \bar{\chi} \\ \end{array}$$ $$N_{\rm prod} = 2 \times \sigma(pp \to \chi\bar{\chi}) \times L_T \times n_T \times {\rm POT}$$ ## WIMP Rescattering - * Lots of stuff in between target and detector. - * Deep inelastic scattering type process. MEAN FREE PATH $$\lambda = \frac{A}{N_A \rho \sigma \left(\chi N \to \chi N\right)}$$ RESCATTERING PROBABILITY $$P = \int_0^L dx \, \frac{1}{\lambda} \, e^{-\frac{x}{\lambda}}$$ #### **FINALLY DETECT:** $$N_{\rm detected} = \epsilon \times (1 - P_{\rm Si}) \times P_{\rm Fe} \times N_{\rm prod}$$ SO IS MINOS REALLY A WIMP CANON? FIRST GOOGLE IMAGE HIT FOR "MINOS CANNON" DOES NOT BODE WELL. ## ANGULAR DISTRIBUTION OF HARDEST WIMP (g=1) **BUT HOW MANY DO WE CATCH?** ### ANGULAR DISTRIBUTION OF HARDEST WIMP (g=1) **BUT HOW MANY DO WE CATCH?** ## MINOS as a WIMP Cannon **Chris J Wallace IPPP, Durham** ## MINOS as a WIMP Canton **Chris J Wallace IPPP, Durham** ## MINOS as a WIMP Cairion **Chris J Wallace IPPP, Durham** University of Durham #### **NEUTRAL CURRENTS IN MINOS NEAR DETECTOR** REALLY NEED TO KNOW THE NUMBERS FOR THE BACKGROUND #### MONOJET VS MINOS BOUNDS **COUPLING ENTERS TO FOURTH POWER IN CROSS SECTION.** ### **REAL SET UP** A NEUTRINO FIXED TARGET EXPERIMENT ## Target ### **FANTASY SET UP** A NEUTRINO FIXED TARGET EXPERIMENT #### **ANGULAR DISTRIBUTION OF HARDEST WIMP** **BUT HOW MANY DO WE CATCH?** ### **ANGULAR DISTRIBUTION OF HARDEST WIMP** **BUT HOW MANY DO WE CATCH?** #### MONOJET VS "PIE IN THE SKY" MINOS BOUNDS COUPLING ENTERS TO FOURTH POWER IN CROSS SECTION. ## Very light mediators - * We can consider MeV "WIMPs". - * To maintain kinematic regime, use 1 MeV mediator. $m_V < 2m_\chi$ - * Nontrivial! Must introduce dipole picture: Nice physical picture dipole scattering. Regulates potential collinear divergence for low mediator masses. $$\sigma \propto \int d\vec{b} \int d\vec{\Delta} \theta (\Delta^2 Q^2 > a^2) \frac{\Xi(\vec{b}, \vec{\Delta})}{\Delta^4}$$ #### PRELIMINARY BOUNDS FOR LOW MASSES BOUND SHOULD GET STRONGER FOR LOWER MASS, MAYBE A PROBLEM AT 1 GEV? ## To do: - * Finish (pseudo)scalar, axial vector cases. - * Much testing of dipole model. - * Alternative couplings/portals/models. - * Other QCD production mechanisms (meson decay). - * Other DM constraints (micrOMEGAS for DM properties, e.g.) ## Message - * Can consider very light mediators in this context (some testing required). - * The specific bounds on our (toy) model are not so important. - * MINOS (and similar) is a good testing ground for WIMPs, can compete with LHC. - * Good new physics opportunities with proton fixed target experiments. THANKS!