White Dwarfs as Physics Laboratories: The Axion case

> Jordi Isern ICE-CSIC/IEEC

Collaboration:

L. Althaus, S. Catalán, A. Córsico, E, García-Berro, M. Salaris, S. Torres

8th Patras Workshop on axions, WIMPs & WISPs Chicago, July 20th, 2012

The white dwarf population is one of the best studied!

- # They are the end stage of
 low and intermediate-mass4
 stars
- # Their evolution is just a cooling process
- # The basic physical ingredients of their evolution are well identified (not all has been satisfactorily solved yet)
- # Impressively solid observational background for testing theory.

Courtesy of Christensen-Dalgaard

White dwarf cooling

$$L + L_{v} + (L_{e}) = -\int_{M_{WD}} c_{v} \frac{dT_{c}}{dt} dm - \int_{M_{WD}} T\left(\frac{\partial P}{\partial T}\right)_{v,x} \frac{dV}{dt} dm + (l_{s} + e_{s})\dot{m}_{e} + (\varepsilon_{e})$$

A L(T_c) relationship is necessary to solve this equation It depends on the properties of the envelope. $L \propto T^{\alpha}$

 $\alpha \approx 2.5 - 2.7$

CO.core/He-envelope/H-envelope

GAIA mission (2013-2018)

400,000 WD

Large Synoptic Survey Telescope (LSST)

50,000,000 WDr > 27.5 mag

First light: 2015 Start Science: 2017 During their cooling, WD find some instabilities and they experience Luminosity fluctuations: DOV, DBV, DAV

Non-radial g-modes

Long period waves ~ 10² - 10³ s
Gravity is the restoring force

The period increases as the star cools down and decreases as it contracts.

The radial term can be neglected for cool enough stars (DAV, DBV)

- DOV variables: the drift can be positive or negative depending on the mode
 - PG1159-35: P = 516 s and dP/ dt=13.07 +/-0.3 x 10⁻¹¹ s/s
- DBV variables: the drift is always positive. dP/dt ~ 10⁻¹³ – 10⁻¹⁴ s/s. No drift measurements
- DAV variables: the drift is always positive.
 - G117-B15A: P=215.2 s, dP/dt = 3.57x10⁻¹⁵ s/s (Kepler et al 2005)
 - R548: P =213.13 s, dP/dt </= 5.5 x 10⁻¹⁵ s/s

Còrsico and Athaus, 2004

Kepler et al 2005

$\dot{\Pi} = (12.0 \pm 3.5) \times 10^{-15} \text{ s/s}$

The first value (Kepler et al'91) was a factor of 2 larger than expected. Three solutions:

- Observational error
- White warfs with "IME" cores
- Exotic source of cooling

$$M_{bol}(t) = -2.5 \log L(t) + ctn$$

$$Photon lum
Neutrino lum
Axion lum
G117-B15A
$$\sigma = \frac{g_{ae}^2}{4\pi}$$$$

DFSZ axions Bremmsstrahlung is dominant Nakagawa et al 1987, 1988

 $g_{ae} \sim 2.2 \times 10^{-13}$ (m_a ~ 8 meV) lsern+'92

Evolution of the measurements of the period of pulsation period drift of G117-B15A

Table 1. Characteristics of G117–B15A as stated by spectroscopy and according to our asteroseismological model.

Quantity	Spectroscopy	Asteroseismological model
$T_{\rm eff}$ [K]	11430-12500	11985 ± 200
M_*/M_{\odot}	0.530 - 0.622	0.593 ± 0.007
$\log g$	7.72 - 8.03	8.00 ± 0.09
$\log(R_*/R_{\odot})$		-1.882 ± 0.029
$\log(L_*/L_{\odot})$		-2.497 ± 0.030
$M_{\rm He}/M_{*}$		$2.39 imes 10^{-2}$
$M_{\rm H}/M_{*}$		$(1.25 \pm 0.7) \times 10^{-6}$
$X_{\rm C}, X_{\rm O}$ (center)		0.28, 0.70

Note 1: the ranges of values in column 2 have been derived by taking into account the spectroscopic analysis of Robinson et al. (1995), Koester & Allard (2000), Koester & Holberg (2001), Bergeron et al. (1995, 2004).

Note 2: The quoted uncertainties in the asteroseismological model are the internal errors of our period-fit procedure.

Table 2. The observed (G117–B15A) and theoretical (asteroseismological model) periods and rates of period changes.

-	По	Π^t	l	k
	[s]	[s]		
		189.19	1	1
	215.20	215.22	1	2
	270.46	273.44	1	3
	304.05	301.85	1	4
	П°	Πt	l	\boldsymbol{k}
	$[10^{-15} s/s]$	$[10^{-15}s/s]$		
	. , ,	. / .		
	_	3.01	1	1
Kepler+'12	4.19 ± 0.53	3.01 1.25	1 1	$\frac{1}{2}$
Kepler+'12	4.19±0.53	3.01 1.25 4.43	1 1 1	1 2 3

Weight function

Other exemples:

```
DAV:
R548 (ZZ Ceti), Π =213 s, dΠ/dt ≈ 0.8 to 4.3 x 10<sup>-15</sup> s/s
Mukadam +'09
DBV:
```

```
EC20058-5234, П =257 s, dП/dt ≈ 8 x 10<sup>-13</sup> s/s
D'Alessio+'10
KIC 8626021 (Kepler mission)
```

The luminosity function

Number of white dwarfs per unit of volume and magnitude versus luminosity

$$n(L) = \int_{M_l}^{M_u} \Phi(M) \Psi(T_G - t_{cool} - t_{ps}) \tau_{cool} \, dM$$

- 1.- n(L) is the observed distribution
- 2.- Φ, Ψ are the IMF and SFR respectively. T_G is the age of the Galaxy
- 3.- t_{cool} is the cooling time
 - $t_{\mbox{\tiny PS}}$ is the lifetime of the progenitor
 - τ_{cool} is the characteristic cooling time Hidden an IMFR

If the 3 ingredients are known it is possible to use the WDLF to test new physics

Surveys are more and more accurate and significative

Sample of WD: High precision LF

The best fit is obtained for $m_a cos^2 \beta \sim 5 \text{ meV}$ Models from Salaris+'00

•

• Metallicities

Comparison between cooling models

<u>The H layer:</u>

- Acts as a source of opacity
- •If its mass is larger than 2x10⁻⁴ M_o, H-burning
- •Evolution predicts 10⁻⁴ M_o

<u>The He layer</u>

- \bullet Important source of energy at very low $\rm T_e$
- •Low opacity (n-Das cool much faster)
- •Controls the diffusion of H inwards (DA-nDA)
- •Controle the diffusion of C outwards (DB-DQ)
- •Evolution predicts $10^{-2} M_o$

Is the origin of the DA, n-DA character:primordial ?mixing?both?

Luminosity versus time (dotted lines without sedimentation)

DA, non-DA influence

Fig. 1.— $L - T_c$ relationships for our 0.61 and 0.87 M_{\odot} WD models (with phase separation not included). Solid lines denote H-atmosphere models, dashed lines He-atmosphere ones.

Assume that: $L = g T_C^{\gamma}$ From the figure we see that: $\gamma_{DA} \approx \gamma_{nDA}$ in the range $-3 \le \log L \le -1$

 $L \approx -\frac{dU}{dt} \approx -C_{V} \frac{dT_{C}}{dt} \text{ (we neglect the compression term)}$ $\frac{dL}{dt} = \gamma g T_{C}^{\gamma-1} \frac{dT_{C}}{dt} \text{ (from the L-T_{C} relationship)}$ $N_{WD} \propto \dot{l}^{-1} = -\frac{L}{dL/dt} = \frac{C_{V}}{\gamma g} T_{C}^{1-\gamma}$

Conclusions:

- # Because of their simplicity, WDs are excellent complementary laboratories for testing new physics.
- # The recent luminosity functions and the measurement of the secular drift of the pulsation period of DAV suggest that WDs cool down more quickly than expected .
- # Axions or light bosons able to couple to electrons could account for this discrepancy ($g_{ae} \sim 2-5 \times 10^{-13}$)
- # The results seem robust (for the moment) but more refinements are needed:
 - * Extend the observational LF to high and low luminosities
 - * Obtention of the LF for massive white dwarfs
 - * Improvement of the cooling models. Envelope is crucial
 - * Role of binaries
- # This method can be used in other problems

GAIA & LSST can provide the necessary precision & accuracy

Suplementary information

The cooling process (I)

Neutrino cooling [log(L/L_o) > -1.5] Is the must complicated phase because the initial conditions are unknown.

Neutrinos dominate & thermal structures converge

Very short epoch (< 10⁸ yr)

Althaus+'10

The cooling process (II)

Fluid cooling $[-1.5 > log(L/L_o) > -3]$ Gravothermal energy

Coulomb plasma

The main uncertainty comes from the C/O abundances that depend on: $\# {}^{12}C(\alpha,\gamma){}^{16}O$ reaction , # metallicity # treatment of convection # mass of the progenitor

The cooling process (III)

Crystallization $[-3 > log(L/L_o) > -4.5]$

Latent heat (≈ kT_s per particle)

Sedimentation upon crystallization that depends on the chemical profile and phase diagrams

The cooling process (IV)

Debye cooling $[-4.5 > log(L/L_o)]$

At low temperatures, the specific heat follows the Debye law

Compression of outer layers is the main source of energy & prevents the sudden disappearance of the white dwarf

Dependence on the IMF

The WDLF is not very dependent on the IMF as far as low mass stars are effectively produced.

Influence of the SFR

If the peak coincides with the normalization (red line) the bright branch falls below the standard

15

 $\log N (pc^{-3} M_{bol}^{-1})$ -6 ψ = 3, if $t_0 < t < t_0 + \Delta t$ ψ = 1, if $t < t_0$; $t > t_0 + \Delta t$ 5 10 M_{bol}

-2

-4

$$n(l) = \int_{M_{\min}}^{M_{\max}} \Phi(M) \Psi(T_{gal} - t_{cool} - t_{SP}) \tau_{cool} \, dM$$

In the case of massive WD

$$\begin{split} \mathbf{t}_{SP} &\ll t_{cool} \\ n(l) &\propto \Psi \Big(T_{gal} - t_{cool} \Big) \end{split}$$

The luminosity function of massive WD closely follows the SFR. Irregularities are detectable!

INFLUENCE OF THE ATMOSPHERE

Salaris et al 2000

Models should be noticebly more luminous to mimic the extra cooling introduced by axions. The evolution of the envelope is crucial! Cheng & Hansen'11Thick WD (53%) $M_{H} \sim 10^{-4} M_{*}$ (dashed line)He WD(32%) $M_{H} \sim 10^{-8} M_{*}$ (solid line)He WD(15%) $M_{H} \sim 0 M_{*}$ (dot-dashed)

Cheng & Hansen'12 Solid line: mixture WD Dash-dotted: thick H WD

Upper figure: Solid circle: Liebert+'88 Hollow circle: Legget+'98

Lower figure: Harris+'06

Influence of binaries:

Presence of He-white dwarfs

Mergers

Tidal heating

Non resolved binaries

Contamination by He-WD

Birthrate calculation

Isern et al, Thermonuclear Supernovae, Ed. Ruiz-Lapuente, Canal, Isern, Kluwer p. 127 (1997)

- Only evolutionary channels in which RLOF occurs when the envelope is convective
- Models obtained with FRANEC. Solar metallicity
- WD cooling models from Salaris et al 2000
- Catalán et al (2008) IFMR
- Common envelope treatment: Iben & Tutukov (1984)
- Magnetic breaking
- Salpeter's IMF for the primary,
- F(q) ∞ q; q = M₂/M₁
- Distribution of initial separations: $H(A_0) \propto 1/A_0$
- During the merging ALL the mass of the secondary is transferred to the primary

Influence on the previous evolution

Influence on core collapse supernovae

Raffelt'06 m_a(KSVZ) < 16 meV m_a (DFSZ) ?

Keil et al '97

Nucleon bremsstrahlung is dominant

Change of the chemical profile because of solidification

Delays introduced by crystallization

White dwarf envelopes

- DA: Pure H layers.
 - 90,000 K > T_e > 6,000 K, below this T Balmer lines are not seen
- DO: spectrum dominated by He II
 - 100,000 K > T_e > 45,000 K. They are the hottest
 - C,N,O,Si are present in the photosphere
 - The coolest are H-poor
- DB: He dominated armospheres
 - 30,000 K > T_e > 12,000 K
 - There is a gap betwee DO and DB!!!
- DQ: He dominated atmospheres
 - 12,000 K > T_e > 6,000 K
 - C abundances in the range of $10^{-7} 10^{-2}$
- DZ: only metallic features (Ca II H-K)
 - T to small to show the lines of the dominant elements
- DC: So cool that the dominant component is not seen
 - No lines deeper than 5%

Rowell & Hambley'11

Neutrinos

