A New Operator for Axion Dark Matter Detection

Peter Graham Stanford

with

Surjeet Rajendran

PRD **84** (2011) arXiv:1101.2691 + to appear

Dark Matter Motivation

Dark Matter requires physics beyond the Standard Model and it's almost the only such proof

two best candidates: WIMPs and Axions

many experiments search for WIMPs

currently challenging to discover axions in most of parameter space

Important to find new ways to detect axions

misalignment production:

after inflation axion is a constant field, mass turns on at T ~ Λ_{QCD} then axion oscillates

$$a(t) \sim a_0 \cos\left(m_a t\right)$$

Preskill, Wise & Wilczek, Abott & Sikivie, Dine & Fischler (1983)

the axion is a good cold dark matter candidate

$$\begin{array}{ll} \mathcal{L} \supset m_a^2 a^2 & \text{with} & m_a \sim \frac{\left(200 \text{ MeV}\right)^2}{f_a} \sim \text{MHz} \left(\frac{10^{16} \text{ GeV}}{f_a}\right) \end{array}$$

misalignment production:

after inflation axion is a constant field, mass turns on at T ~ Λ_{QCD} then axion oscillates

$$a(t) \sim a_0 \cos\left(m_a t\right)$$

Preskill, Wise & Wilczek, Abott & Sikivie, Dine & Fischler (1983)

the axion is a good cold dark matter candidate

axion easily produces correct abundance $\rho = \rho_{\rm DM}$

requires
$$\left(\frac{a_i}{f_a}\right)\sqrt{\frac{f_a}{M_{\rm Pl}}} \sim 10^{-3.5}$$
 late time entropy production eases this

we assume:

1. PQ transition does not occur after inflation (or axion strings decay to axions)

2. gravitational waves not observed in CMB (axions \Rightarrow isocurvature or non-gaussian)

Fox, Pierce, & Thomas (2006)

Axions From High Energy Physics

Easy to generate axions from high energy theories

have a global PQ symmetry broken at a high scale f_a

string theory or extra dimensions naturally have axions from non-trivial topology Svrcek & Witten (2006)

naturally expect large $f_a \sim \text{GUT}$ (10¹⁶ GeV), string, or Planck (10¹⁹ GeV) scales

A Different Operator For Axion Detection

Strong CP problem: $\mathcal{L} \supset \theta \, G \widetilde{G}$ creates a nucleon EDM $d \sim 3 \times 10^{-16} \, \theta \, e \, \mathrm{cm}$

the axion: $\mathcal{L} \supset \frac{a}{f_a} G \widetilde{G} + m_a^2 a^2$ creates a nucleon EDM $d \sim 3 \times 10^{-16} \frac{a}{f_a} e \,\mathrm{cm}$

A Different Operator For Axion Detection

Strong CP problem: $\mathcal{L} \supset \theta \, G \widetilde{G}$ creates a nucleon EDM $d \sim 3 \times 10^{-16} \, \theta \, e \, \mathrm{cm}$

the axion:
$$\mathcal{L} \supset \frac{a}{f_a} G \widetilde{G} + m_a^2 a^2$$
 creates a nucleon EDM $d \sim 3 \times 10^{-16} \frac{a}{f_a} e \,\mathrm{cm}$

$$a(t) \sim a_0 \cos(m_a t)$$
 with $m_a \sim \frac{(200 \text{ MeV})^2}{f_a} \sim \text{MHz}\left(\frac{10^{16} \text{ GeV}}{f_a}\right)$

axion dark matter
$$\rho_{\rm DM} \sim m_a^2 a^2 \sim (200 {\rm MeV})^4 \left(\frac{a}{f_a}\right)^2 \sim 0.3 \, \frac{{\rm GeV}}{{\rm cm}^3}$$

so today:
$$\left(\frac{a}{f_a}\right) \sim 3 \times 10^{-19}$$
 independent of f_a

the axion gives all nucleons a rapidly oscillating EDM independent of f_a

A Different Operator For Axion Detection

the axion gives all nucleons a rapidly oscillating EDM

thus all (free) nucleons radiate

standard EDM searches are not sensitive to oscillating EDM

We've considered two methods for axion detection:

1. EDM affects atomic energy levels (significantly different from standard EDM searches) PRD **84** (2011) arXiv:1101.2691

2. collective effects of the EDM in condensed matter systems (Preliminary)

"Atomic Clock" Setup

Unlike a normal EDM search, can look directly for the axion, without external EM fields to modulate the signal

PWG & S. Rajendran PRD 84 (2011)

instead use internal fields, much larger:

$$E_{\rm int} \sim \frac{e}{{\stackrel{\circ}{\rm A}}^2} \sim 10^{12} \frac{\rm V}{\rm m}$$

"Atomic Clock" Setup

Unlike a normal EDM search, can look directly for the axion, without external EM fields to modulate the signal

PWG & S. Rajendran PRD 84 (2011)

instead use internal fields, much larger:

 \vec{E}_{ext}

$$E_{\rm int} \sim \frac{e}{{\stackrel{\circ}{\rm A}}^2} \sim 10^{12} \frac{\rm V}{\rm m}$$

There are two important caveats: Parity: requires molecules Schiff's Theorem: requires Actinides

NMR spin precession ⇒ coherent phase addition at frequency m_a
Scan frequency by changing B: up to ~1 MHz (10 MHz?) achievable cross-correlate between two different experiments

Molecular Axion Searches

differential measurement cancels backgrounds, preserves signal since axion effects different between the two species

induces a shift to the energy levels: $\delta \omega \sim \vec{E}_{int} \cdot \vec{d}_n \sim 10^{-24} \text{ eV}$ shot noise limit is $\delta \omega \sim \left(1 \text{ s} \cdot \sqrt{10^{14} \text{ atoms}}\right)^{-1} \sim 7 \times 10^{-23} \text{ eV}$

Molecular Axion Searches

differential measurement cancels backgrounds, preserves signal since axion effects different between the two species

induces a shift to the energy levels: $\delta \omega \sim \vec{E}_{int} \cdot \vec{d}_n \sim 10^{-24} \text{ eV}$ shot noise limit is $\delta \omega \sim \left(1 \text{ s} \cdot \sqrt{10^{14} \text{ atoms}}\right)^{-1} \sim 7 \times 10^{-23} \text{ eV}$

Possible Future Improvements:

- cool more molecules? steadily improving...
- better traps: O(10-100) improvement from longer interrogation times
- O(10) from using ²²⁹Pa
- Squeezed atom states?

Shot Noise
$$\sim \frac{1}{N}$$
 instead of $\frac{1}{\sqrt{N}}$

Vuletic group at MIT demonstrated O(5)

Condensed Matter Techniques (Preliminary)

high nuclear spin alignment achieved in several systems

applied E field causes precession of nucleus
SQUID measures resulting B field change
builds on e⁻ EDM experiments Lamoreaux (2002)

resonant enhancement: \propto

$$\frac{nEd}{|\mu B_{\rm ext} - m_a|}$$

7 7

signal scales with large density of nuclei:

non-resonant experiment also possible

measure correlations between two independent experiments

differential measurement removes backgrounds, requires uniform B-field

sensitivity and backgrounds appear promising

Axion Searches with Gluon Coupling f_a (GeV)

can most easily search in kHz - GHz frequencies \rightarrow high f_a

Axion Searches with Gluon Coupling f_a (GeV)

Axion Coherence

How large can T be?

Χ

Spatial homogeneity of the field?

Classical field a(x) with velocity $v \sim 10^{-3} \Longrightarrow \frac{\nabla a}{a} \sim \frac{1}{m_a v}$

spread in frequency (energy) of axion =

$$\frac{\Delta\omega}{\omega} \sim \frac{\frac{1}{2}m_a v^2}{m_a} \sim 10^{-6}$$

0

1

$$T \sim \frac{1}{m_a v^2} = 1 \text{ s} \left(\frac{f_a}{10^{16} \text{ GeV}}\right)$$

Parity Breaking

Axion breaks parity (CP)

Atomic states have very little parity breaking

thus
$$\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$$

One possible solution:

molecules can naturally break parity at O(1), though more difficult to work with due to low-lying modes

Must control molecular rotation with applied E field (~ 10^6 V/m)

Use applied B field (< 0.1 T) to rotate nuclear spin with axion's frequency (easily scanned)

Schiff's theorem: in electrostatic equilibrium the E field on any point charge is zero

thus $\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$

Schiff's theorem: in electrostatic equilibrium the E field on any point charge is zero

thus
$$\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$$

higher moments take into account corrections to this (e.g. finite size of nucleus...)

Schiff moment:
$$\delta \omega \sim E_{\text{int}} d_S \sim (10^{-9} Z^3) E_{\text{int}} d_n$$

often use Hg or Tl $\delta\omega \sim 10^{-3} E_{\rm int} d_n \sim 10^{-27} {\rm eV}$

Schiff's theorem: in electrostatic equilibrium the E field on any point charge is zero

thus
$$\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$$

higher moments take into account corrections to this (e.g. finite size of nucleus...)

Schiff moment:
$$\delta \omega \sim E_{\text{int}} d_S \sim (10^{-9} Z^3) E_{\text{int}} d_n$$

often use Hg or Tl $\delta\omega \sim 10^{-3} E_{\rm int} d_n \sim 10^{-27} {\rm eV}$

²²⁵ Ra	0.2	$2 \times 10^{-25} \text{ eV}$
²³⁹ Pu	0.3	$3 \times 10^{-25} \text{ eV}$
²²³ Fr	0.4	$4 \times 10^{-25} \text{ eV}$
²²⁵ Ac	0.6	$6 \times 10^{-25} \text{ eV}$
²²⁹ Pa	9	$9 \times 10^{-24} \text{ eV}$

Schiff's theorem: in electrostatic equilibrium the E field on any point charge is zero

thus $\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$

higher moments take into account corrections to this (e.g. finite size of nucleus...)

Schiff moment:
$$\delta \omega \sim E_{\text{int}} d_S \sim (10^{-9} Z^3) E_{\text{int}} d_n$$

<u>half-life</u>	$^{3}E_{\text{int}} d_n \sim 10^{-27} \text{ eV}$	$\delta\omega \sim 10^{-1}$	often use Hg or Tl
15 d	$2 \times 10^{-25} \text{ eV}$	0.2	²²⁵ Ra
2.4×10 ⁴ y	$3 \times 10^{-25} \text{ eV}$	0.3	²³⁹ Pu
22 min	$4 \times 10^{-25} \text{ eV}$	0.4	²²³ Fr
10 d	$6 \times 10^{-25} \text{ eV}$	0.6	²²⁵ Ac
1.4 d	$9 \times 10^{-24} \text{ eV}$	9	²²⁹ Pa

Schiff's theorem: in electrostatic equilibrium the E field on any point charge is zero

thus $\vec{E}_{\rm int} \cdot \vec{d}_n \approx 0$

higher moments take into account corrections to this (e.g. finite size of nucleus...)

Schiff moment:
$$\delta \omega \sim E_{\text{int}} d_S \sim (10^{-9} Z^3) E_{\text{int}} d_n$$

often use Hg or	TI $\delta\omega$	$\sim 10^{-3} E_{\rm i}$	$_{\rm nt} d_n \sim 10^{-27} {\rm eV}$	<u>half-life</u>
Argonne - 225	Ra	0.2	$2 \times 10^{-25} \text{ eV}$	15 d
239	Pu	0.3	$3 \times 10^{-25} \text{ eV}$	2.4×10 ⁴ y
Stony Brook → (22)	³ Fr	0.4	$4 \times 10^{-25} \text{ eV}$	22 min
225	Ac	0.6	$6 \times 10^{-25} \text{ eV}$	10 d
229	Pa	9	$9 \times 10^{-24} \text{ eV}$	1.4 d

NIST cooled polar ${}^{40}K{}^{87}Rb$ to $< \mu K$