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Motivation

— Non-Gaussianities
— CDM Isocurvature models: Axion and WIMPzilla

Isocurvature constraints

— Relationship with NG

“Gravitational Ward ldentity”

Application

— Correlation between curvature and isocurvature



Primordial density perturbation
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Non-Gaussianities

* PLANCK can detect large non-Gaussianities

— If detected, it will rule out single-field mﬂatlonary
models

‘l>
‘l>

Ty’
— |t can b a probe of new physics

T ~ O(e)  forsingle-field inf. models

fnp ~

T~
D = E
H‘D E

e A possible way to generate large “local” non-
Gaussianities
* Additional degree of freedom during inflation



Additional Scalar field o

Density Perturbation 0P 25%
Po ﬁ =

The linear term vanishes if background g = ()
the density perturbation becomes non-Gaussian.

Non-Gaussian terms

)
Unstable o 2~ r 2P curvaton models
5100_ Decays into radiation Po
IOU S
Stable o .S ~ 2Po CDM Isocurvature

Remains as CDM Po



CDM Isocurvature Models

AXion: To solve the strong CP
problem

Super Heavy Fields: To avoid
thermalization

PQ sym. undergoes SSB before
inflation and is never restored.

* 1.:a > Hinf/zn

Axions are produced by “vacuum
misalignment” mechanism

. 5a=f50=H, /2

Coherent oscillation after QCD phase
transition behaves like CDM .

Super heavy stable particles are non-
thermal DM called “WIMPzillas”

* <ov><1/my?

* Forlarge m,
n<ov> << H.

Many candidates motivated by SUSY
and String theory exists: Q-Balls, D-
Matter, Crypton, light KK particles ...



CDM lIsocurvature constraints

Angular Scale
o0F 2 0.5
T I T

0.2%
T

Anisotropy Power (uK?2)

> 1 1 1 | | 1 1 /l 1 1 1
10 100 500
Multipole momeit (I)

Consistent with adiabatic init. condition,

But admixture with isocurvature
is not ruled out!

Adiabaticity Parameters
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Observational Bounds

Komatsu(10), Sollom(09)
(ng=1)

ag S 0.07 for =0
a_1 50.004 for f=-1

Significantly different!
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Properties of A and B,

Power spectrum /Z
1

A% (k) = kOk

ky — k

Almost arbitrarily tunable using parameters: Wy (H, TR, fay---), m2/H2,

b1, T

Bi-spectrum

3/2
BS(ﬁlaﬁQaﬁé) — O< AS/

Completely fixed
by the power spectrum

* For maximum NG, the isocurvature amplitude should
be saturated to its observational upper bound. ¢, .avoo(11)
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NG by CDM lIsocurvature
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a™ = 0.004 Is cross-correlation B large or small?
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Naive Intuition
for small cross-correlation B << 1

S —C

Scalar field o is an energetically subdominant component
during inflation. o cannot generate large curvature
perturbationq.  ,_

2
< H'Lnf ~ 10—10
Ptotal ™~ Mg

(— S

Curvature perturbation { also cannot affect the gravitational

particle production process, because of large separation of
particle production and CMB scales.

kCMB/kp.p. ~ e
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Naive Intuition
for small cross-correlation B << 1

S —C

e Scalar field o is an energetically subdominant component
during inflation. o cannot generate large curvature
. 2
perturbationq. - H 1010

nrc)

This has NOT been proven!

¢ — S

* Curvature perturbation  also cannot affect the gravitational

particle production process, because of large separation of
particle production and CMB scales.

kCMB/kp.p. ~ e
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Explicit computation ﬁf

, .
) _ 4. 3(|ij 2 0i ¢ a” ; 00 §
Si —/d ra (| TYa%5,;¢C + T O(—F +egzQ) —T" %

3
> —/d4xa3§mga2c

Dangerous Interaction terms yield strong cross-correlation
(5¢) ~0() (&)

— B ~ O(1) for massive o

What is wrong?



Further Questions

* Gauge Invariance of the correlators

(CC) 5 (85),{¢S) -+

— (, S are gauge invariant variables.
— Difficulties:

* 0 has no classical background.

* Sis acomposite operator.

These questions are answered by
“Gravitational (Diffeomorphism) Ward Identity”
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“Gravitational” Ward Identity

Under x* — ¥ = z# — € ,the metric transforms as

Juv = Guv = Guv + LeGpy = G + 2V (€0,

Whereas the two-point function should remain invariant
G@ow), = (G@6@), = [ DecSTo(E)0()

— [ DocisrtEalgia — 9oy - o

Expand w.r.t e.

1

0 0
9 /d42v —gz (v,uey)z <T£V¢x¢y>g — GM <@¢x¢y> + EH <¢m7¢y>g .

g

Equivalently,

0 0
i\/ _gzvu,z <T,§W¢x¢y>g — 54($ T Z) <8W¢x¢y> + 54(37 o Z) <¢wa—yu¢y> .
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In-In formalism

o

(t)‘in> — <(T6—iftooff1int(t’)dt’>Tél(t) (Te_iffoo ﬁfm(t,,)dt,,)>

A A

= (OF(1)) + (i) /t at' (|O1(t), HT (8] ) + -+

Interaction vertices come with commutators

Apply it to cross-correlator in the comoving gauge

<m |§(t,f)§(t,§)‘ m> = <612>z'ft dt.d>z a? < [&géy, % (T#”5§MV)Z}>

. Iy
where = _2%2 . (_% + €53(),i
(=5 tegeQi 052

The metric perturbation is obtained by ADM formalism
With gauge fixed.



Feynman Diagram for In-In formalism

Commutator and anti-commutator decomposition:
e Easy to give physical interpretation
* Convenient to count the power of scale factor “a”

For example, <Sxéy> _ ﬁi/d‘lz a’ < [&3, %Tyg] > <{éy,5§p,1/,z}>
o)) )

Diagrammatically, All edges without double
A Sa: Cy lines are anti-commutators

(classical cor.)

Time dir.

1 : .
§(T5g)z Commutators # of comm. = # of internal vertices

= Retarded Green func.

Curvature induces isocurvature Isocurvature induces curvature
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Compute Cross-correlation

S, P ¢, p

y Y ~ 1 <<ﬁ ﬁ>H2( p )3—2V

~ 9 ,\2
/\2\ 1272 (52) aH
2 m? m
where 3—2v= 2 +0(47)
S0 (T 6g,,)- 3m2 "
With the long wavelength approximation
(Only super horizon modes are taken in the loop)
This diagram generates strong cross-correlation.
* It suffers from UV divergence in the loop, which
/ signals the long wavelength approximation is not
/ reliable.
/

* The UV cut-off regulator with the long wavelength
approximation obscures possible cancellation due

to symmetry.
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Dangerous Interaction term
S B ¢, P

g ’ Sint = | d*za2[T7a?6;;¢ TOi(—i—l—ea—Q')-—TOOi]
Y nt T 1] H VQ )2 H

This is the dangerous interaction term.
Non-derivative coupling

Explicitly,

i <A—»§_—'> _ t DT A2 ™17
15 )~ =gy /t dt.d’zaze""*([6(0,1), 7" (2)]) (a*d;)

Note that ”C — COIlSt” is a pure gauge. i.e. rescaling scale factor q — a,ec

thusweespect i [/ o(p) =0 = I, 5(p) o< O(p* /a?)



Proof by Ward Identity : lim 7 s() =0

Chung,Yoo&Zhou(in prep)

Ward Identity (in-in version) for 0-2

; / it <vuey>z<[T;v,a2<x>}>:eﬂ< 0 02(:13)>

oxt

(requires careful regulator choice.)

Choose G'LL — (O’ f) spatial dilatation flow

(For a rigorous proof,
a window function may be needed.)

viEj — CLZCSfL'j V,LLGO — VOE,/ = 0.

RHS vanishes because of translational symmetry of the FRW space-time.

:>/ dt,d’z a3 ([T ;503,07 (x)]) =0
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Summary of Computation

Caveat: !
* IR mode contribution is neglected. /
* Numerical O(1) factor cannot be estimated accurately. . g



Conclusion

* Gravitational Ward ldentity is very useful in
perturbation theory.

— provides a general proof of gauge invariance of
correlation functions. (¢(), (SS5), (S¢)

— clarifies non-trivial cancellation due to
diffeomorphism.

» Application: cross-correlation between ( and S

— We showed cross-correlation B is small for Axion/
WIMPzilla isocurvature models. (The 1° proof)

 These models can generate large non-Gaussianities.
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Advantages of Decomposition

For super horizon mode

L for ¢
.\H\. — GX T,y - a%
X, Xy ret( ) ) a;3/2—|—vay—3/2—’/ for o
CLO
)?a:\. X —3/24v —3/24v
O
/ — I
K S—C |socurvature induces curvature
/
O

/ — IC—>S Curvature induces isocurvature
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Large NG is achievable if a model can saturate the isocurvature power

spectrum. Conditions: v ~ (.07, Q2 f, 1

1
e 2 12
mml7x108GeY §m¢gb model

WIMPZilla "

Chung&Yoo(11)

0.963

Log10 Tru/GeV

/ —0.962

“a=0.07"” can be achieved
if m,<4H,_

10—18

24 2.5 24
myx/my



NG by CDM lIsocurvature

Axion

* The average phase angle 6, is negligible. ~
* During inflation, axion is effectively massless = AS (te) 1

At the end of inflation t,
2 2
= As(tr) ~ WaAS(te) ~ W,
After QCD phase transition t,

A 20 = Hing 5210 (1012 GeV) Gev
i, - I —0.59
aei — 92 3 10
Jabi < = <o (1012 Gev>

Large NG is achievable for both CDM isocurvature models
with underlying assumption: small cross-correlation B << 1

25




Adiabatic vs. Isocurvature

A

N\ S\

PR

PcpM
e Adiabatic
o _ % _ % _ Spwu  _. g
p+P p,+P  p,+P,  Pepyt Pepm

o)
C=—D+ P
3(p+P)

For super horizon modes,

PR

VA,

PcpM

* |socurvature

6/) 0 5p L 5/3 CDM

p+P=, P, + P, Peom + Peou
g Pcom p, =6pCDM_36’O}’
Peom+ Poom P, + P, Poonm 4P,
AT | 2
20 __lg_Zy
T 575 26



Gauge Invariance

Under the coordinate change at — ot — €
Perturbations transform as
6Q — 0Q + L.Q
0Guv = 0Guv + LeGu

In general, perturbation is not invariant under the coordinate change.
However, some combinations of them do not depend on the coordinate.

For example,

0px
3(px + Px)’

0p
3(p+P)
where g;; = a*(1 —2W)6;j

(=-V+ (x =—-V+

SX — 3(CX - C)a

How can it apply to a quantum operator without VEV? S*(C) B &2
(02)
27



