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 Quantum Geometry 

Classical geometry: points (events), lines, surfaces 

 

Quantum physics: nothing happens at a definite time or place 

 

Geometry exists only to the extent it can be measured 

 

All measurements are quantum 

 

How does quantum geometry work? 



Architecture of Physics 

Classical Geometry 
Dynamical but not quantum 

Responds to particles and fields 

 

Quantum particles and fields 
Inhabit classical geometry 

 

Explains almost everything, but cannot be the whole story 
Cosmic acceleration 

Thermodynamic, holographic behavior of gravity 

Nonlocality of quantum physics 

Incompatible foundations: classical and quantum definitions of position 

Dynamical classical geometry inconsistent beyond the Planck scale 

 

(classical relation) 



Planckian Quantum Geometry 
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 Quantum particle Black hole 

Planck length ~10-35 meters 

λ = hc / E R = 2GM / c2
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Dynamical geometry must be quantum beyond the Planck scale 



New Planck scale physics 

 

 

The physics of quantum geometry originates at this tiny scale 

 

 

But it may lead to observable effects on larger scales 

 

 

 

 

                seconds 
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Emergent Space-time 

Perhaps classical  space-time is an approximate behavior of a 
quantum system over long durations 

 

Locality, direction, separation of scales may only acquire 
meaning after many Planck times 

 

Quantum matter entangles with geometrical degrees of freedom 

 

Some quantum-geometrical degrees of freedom may not be 
describable using quantum fields or metric fluctuations 

 

New Planckian effects may not be confined to Planck scale 
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Quantum Geometry of Emergent Space-time 

“A time-like trajectory gives rise to a nested sequence of causal diamonds, 
corresponding to larger and larger intervals along the trajectory. The 
holographic principle and causality postulates say that the quantum 
mechanical counterpart of this sequence is a sequence of Hilbert spaces, 
each nested in the next as a tensor factor.” 

      T. Banks 7 

Space-time is defined as a quantum system 
relative to a world line 
 
States are nonlocal and holographic, encoded 
on 2D surfaces of causal diamonds 
 
Hilbert space represented by NxN matrix, 
where N is the duration in Planck units 
(ticks of a Planckian clock) 
 
Causal structure and Lorentz covariance 
are built in; gravity is statistical 
 



Covariant noncommutative geometry 

 

 

 

Positions are operators, not 4-vectors 

transform like classical positions on large scales 

Form dictated by covariance 

Departure from classical behavior is covariant but not invariant 

(Commutator depends on world-line of coordinates) 

 

Interpret as a quantum relationship in emergent space-time 
between two timelike trajectories 
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covariance, together with a physical interpretation that
connects the quantum operators with classical positions
and observables. Quantum positions approximate the
classical ones in the macroscopic limit, but also display
a new quantum-geometrical uncertainty that leads to a
new kind of coherent, transverse quantum fluctuation of
macroscopically separated positions.

Quantum-geometrical behavior similar to that pre-
dicted here has been analyzed previously[15–17], start-
ing from less general assumptions. The earlier work was
based on 2+1D position wave functions, and did not dis-
play a manifestly covariant embedding in standard space-
time. The macroscopic theory here is motivated by sym-
metries of the emergent classical 3+1D space-time, and is
not derived from any particular microscopic theory. Al-
though it is connected to new Planckian physics, there
is no reason to expect it to apply in this form at the
Planck scale. It can be viewed as a hypothesis about how
attributes of position depart very slightly from classical
behavior in the macroscopic limit.

Suppose that the position of a body in each direction µ

is a quantum observable, represented by a self-adjoint op-
erator xµ. Consider the following commutators relating
positions in di↵erent directions:

[xµ, x⌫ ] = x̄


Ū

�
✏µ⌫�i`P , (1)

where indices µ, ⌫,,� run from 0 to 3 with the usual
summation convention, x̄ denotes the expectation value
of the position, Ū

� ⌘ @x̄

�
/c@⌧ the dimensionless ex-

pected 4-velocity of the body, ⌧ the proper time, and
✏µ⌫� the Levi-Civita antisymmetric 4-tensor.

In the limit `P ! 0, the commutator vanishes, and
positions in di↵erent spatial directions behave indepen-
dently and classically. It is interesting to ask what hap-
pens if the scale `P is not zero, in particular if it is of order
the Planck length, `P ⇡ ctP ⌘

p
h̄G/c

3 = 1.616⇥ 10�35

meters. With this choice the information density agrees
with holographic entropy bounds for gravitating systems,
as explained below.

Equation (1) is manifestly covariant: the two sides
transform in the same way under the homogeneous
Lorentz group, as a direct product of vectors. The alge-
bra of the quantum position operators respects the trans-
formation properties of corresponding coordinates in an
emergent classical Minkowski space-time, in a limit where
the operators are interpreted as the usual space-time co-
ordinates. The theory itself thus defines no preferred
direction in space.

On the other hand, the two sides of Eq. (1) are not
invariant. The commutator does depend on the position
and 4-velocity of the body being measured, or equiva-
lently, on the origin and rest frame of the coordinate
system. We interpret this to mean that the commu-
tator describes a quantum relationship between world
lines that depends on their relative positions and veloci-
ties, but not on any other properties of the bodies being

measured. In Eq. (1), the quantum-geometrical posi-
tion state of a body is defined in relation to a particular
world line, the origin of the coordinates. These attributes
make sense if space-time emerges from a quantum geom-
etry whose states describe a “nested sequence of causal
diamonds”[5, 6] , relative to a timelike trajectory, defined
in this instance by the coordinate system.

The departure of positions from classical behavior—
the commutator— depends on classical position and 4-
velocity in a specific way. The explicit dependence in
Eq.(1) on position and velocity is driven by the require-
ment of covariance. The quantum commutator of two
vectors requires two antisymmetric indices that must be
matched by indices on the right side. Thus we require a
nonvanishing antisymmetric tensor, which in four dimen-
sions has four indices, ✏µ⌫�. Two of its antisymmetric
indices match those of the noncommuting positions. The
other two must contract with two di↵erent vectors to
avoid vanishing, and the only available geometrically de-
fined options are the 4-velocity and position of the body
being measured.

The physical interpretation of Eq.(1) is most straight-
forward in the rest frame of the body whose position
is being measured. In that frame, the 4-velocity is
Ū

� = (1, 0, 0, 0) so the non-vanishing terms of Eq. (1)
are those multiplied by ✏µ⌫� with � = 0. The remain-
ing terms describe a noncommutative geometry in three
dimensions:

[xi, xj ] = x̄

k
✏ijki`P , (2)

where indices i, j, k now run from 1 to 3, and the oper-
ators xi correspond to positions at a single time, in the
rest frame of the body. Eq. (2) describes a quantum-
geometrical relationship between positions of two trajec-
tories (or massive bodies) that have expected proper 3-
separation x̄

k, and whose world-lines have the same ex-
pected 4-velocity.

As usual in quantum mechanics, the operators repre-
sent observables, and they operate on states that repre-
sent physical systems. In this case, the quantum system
includes the geometry that relates the trajectories, which
is usually treated classically. Also as usual, the state
can be represented by a wave function, a complex ampli-
tude for each value of the operator’s observable, whose
squared modulus yields a probability for that value. The
wave function in this case is not invariant, but depends
on the positions and velocities of the trajectories whose
relationship it describes.

The quantum commutator leads to an uncertainty re-
lation between the variances of the wave functions of the
conjugate variables. It is derived from Eq.(2) in the usual
way, although the conjugate variables are now positions
in di↵erent directions, instead of familiar examples such
as position and momentum. In the rest frame, the un-
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Quantum-Geometrical Uncertainty of position 

In the rest frame, commutator in 3D at one time: 
 
 
 
Leads to uncertainty in (time-invariant) wave function: 
 

 
 

uncertainty increases with separation 
geometrical wave function describes positional relationship between any 

two trajectories 
quantum departure from emergent classical geometry 

Planckian effect not confined to Planck scale 
Purely transverse to separation 
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covariance, together with a physical interpretation that
connects the quantum operators with classical positions
and observables. Quantum positions approximate the
classical ones in the macroscopic limit, but also display
a new quantum-geometrical uncertainty that leads to a
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macroscopically separated positions.
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ing from less general assumptions. The earlier work was
based on 2+1D position wave functions, and did not dis-
play a manifestly covariant embedding in standard space-
time. The macroscopic theory here is motivated by sym-
metries of the emergent classical 3+1D space-time, and is
not derived from any particular microscopic theory. Al-
though it is connected to new Planckian physics, there
is no reason to expect it to apply in this form at the
Planck scale. It can be viewed as a hypothesis about how
attributes of position depart very slightly from classical
behavior in the macroscopic limit.

Suppose that the position of a body in each direction µ

is a quantum observable, represented by a self-adjoint op-
erator xµ. Consider the following commutators relating
positions in di↵erent directions:
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pens if the scale `P is not zero, in particular if it is of order
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3 = 1.616⇥ 10�35

meters. With this choice the information density agrees
with holographic entropy bounds for gravitating systems,
as explained below.

Equation (1) is manifestly covariant: the two sides
transform in the same way under the homogeneous
Lorentz group, as a direct product of vectors. The alge-
bra of the quantum position operators respects the trans-
formation properties of corresponding coordinates in an
emergent classical Minkowski space-time, in a limit where
the operators are interpreted as the usual space-time co-
ordinates. The theory itself thus defines no preferred
direction in space.

On the other hand, the two sides of Eq. (1) are not
invariant. The commutator does depend on the position
and 4-velocity of the body being measured, or equiva-
lently, on the origin and rest frame of the coordinate
system. We interpret this to mean that the commu-
tator describes a quantum relationship between world
lines that depends on their relative positions and veloci-
ties, but not on any other properties of the bodies being

measured. In Eq. (1), the quantum-geometrical posi-
tion state of a body is defined in relation to a particular
world line, the origin of the coordinates. These attributes
make sense if space-time emerges from a quantum geom-
etry whose states describe a “nested sequence of causal
diamonds”[5, 6] , relative to a timelike trajectory, defined
in this instance by the coordinate system.

The departure of positions from classical behavior—
the commutator— depends on classical position and 4-
velocity in a specific way. The explicit dependence in
Eq.(1) on position and velocity is driven by the require-
ment of covariance. The quantum commutator of two
vectors requires two antisymmetric indices that must be
matched by indices on the right side. Thus we require a
nonvanishing antisymmetric tensor, which in four dimen-
sions has four indices, ✏µ⌫�. Two of its antisymmetric
indices match those of the noncommuting positions. The
other two must contract with two di↵erent vectors to
avoid vanishing, and the only available geometrically de-
fined options are the 4-velocity and position of the body
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The physical interpretation of Eq.(1) is most straight-
forward in the rest frame of the body whose position
is being measured. In that frame, the 4-velocity is
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� = (1, 0, 0, 0) so the non-vanishing terms of Eq. (1)
are those multiplied by ✏µ⌫� with � = 0. The remain-
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where indices i, j, k now run from 1 to 3, and the oper-
ators xi correspond to positions at a single time, in the
rest frame of the body. Eq. (2) describes a quantum-
geometrical relationship between positions of two trajec-
tories (or massive bodies) that have expected proper 3-
separation x̄

k, and whose world-lines have the same ex-
pected 4-velocity.

As usual in quantum mechanics, the operators repre-
sent observables, and they operate on states that repre-
sent physical systems. In this case, the quantum system
includes the geometry that relates the trajectories, which
is usually treated classically. Also as usual, the state
can be represented by a wave function, a complex ampli-
tude for each value of the operator’s observable, whose
squared modulus yields a probability for that value. The
wave function in this case is not invariant, but depends
on the positions and velocities of the trajectories whose
relationship it describes.

The quantum commutator leads to an uncertainty re-
lation between the variances of the wave functions of the
conjugate variables. It is derived from Eq.(2) in the usual
way, although the conjugate variables are now positions
in di↵erent directions, instead of familiar examples such
as position and momentum. In the rest frame, the un-
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certainty relations for a body at position x̄

k are

�xi�xj � |x̄k
✏ijk|`P /2, (3)

where �xi = h|xi � x̄i|2i1/2 represents the spread of the
wave function in each direction, and hi denotes an average
over the wave function.

The wave functions of position in the directions trans-
verse to separation x̄

k between trajectories thus show a
new quantum-geometrical uncertainty that actually in-
creases with |x̄|. For trajectories with macroscopic sepa-
ration, this new uncertainty is much larger than a Planck
length.

The same uncertainty (Eq. 3) was derived in ref. [17]
from wave solutions based on a microscopic 2D commu-
tator, equivalent to Eq. (2) with k = 3 and |x̄3| = `P .
Earlier approaches[15, 16] derived similar behavior from
arguments based on evolution of transverse position wave
functions with a Planck bandwidth limit. The approach
presented here is a better way to display explicit consis-
tency with the symmetries of the emergent macroscopic
classical space-time. It also avoids unnecessary assump-
tions about new microphysics.

Classical space-time emerges in this theory as an ex-
cellent approximation to describe positions and trajecto-
ries with separations much larger than the Planck length.
Consider the angular uncertainty, from Eq. (3), in direc-
tion to a body on the 3-axis, with an expected position
(0, 0, x̄3):

�✓1�✓2 � `P /2|x̄3|, (4)

where �✓1 = �x1/|x̄3| and �✓2 = �x2/|x̄3|. For separa-
tions on any experimentally accessible scale, this devia-
tion from classicality is fractionally negligible. However,
as separations approach the Planck scale, the theory pre-
dicts that directions become indeterminate. The classi-
cal approximation to 3+1D space-time then breaks down,
consistent with the idea of a space-time emerging from a
Planckian quantum system.

With this uncertainty, the number of geometrical de-
grees of freedom in a space-time volume scales holograph-
ically, as the surface area in Planck units. For a rough
estimate, consider the number of di↵erent positions in a
3-sphere of radius R relative to a body at the origin. For
counting purposes, position states are e↵ectively “pixe-
lated” in each direction at a resolution determined by the
position uncertainty. In the radial direction, pixels are
of order `P in size, the usual result for a Planckian fre-
quency cuto↵. In the transverse or tangential directions,
pixel sizes are much larger, given by the uncertainty in
Eq. (3) with R ⇡ |x̄|. The number of independent po-
sition degrees of freedom described by the wave function
over the entire 3D volume then scales like

(R/`P )(R
2
/�xi�xj) ⇡ (R/`P )

2
, (5)

that is, it increases as 2D surface area (R/`P )2, instead
of (R/`P )3. With a Planckian value for `P , the infor-
mation content of a geometrical quantum state is then
just consistent with holographic entropy bounds deduced
from thermodynamic arguments applied to gravitational
systems, such as black holes. Although gravity has not
entered into the discussion, this property is expected for
a theory of emergent space-time capable of describing
gravity entropically[9, 12].
The state described by the geometrical wave function

cannot independently describe the trajectories of indi-
vidual particles or bodies, since that would result in lo-
cally measurable fluctuations dependent on an arbitrary
choice of origin for the coordinate system. However,
the uncertainty is consistent with known physics if the
quantum-geometrical deviations from a classical trajec-
tory are shared coherently and non-locally, so that all
bodies in a small region (where “small” is defined rela-
tive to |x̄|) share approximately the same deviation xi�x̄i

in an actual position measurement. This interpretation
is consistent with the idea that space-time emerges from
quantum geometry, in such a way that the quantum de-
viation from classical position depends only on position
and velocity, and not on any other property of a body.
With this interpretation, the positional quantum states

of bodies in emergent space-time possess a kind of nonlo-
cal coherence not describable by states of standard quan-
tum theory in classical space-time. In the standard view,
the position of a massive body is an average over many
particles. The macroscopic, very low frequency compo-
nents of particle motion are highly correlated, and reduce
to only the three classical positional degrees of freedom
for the body as a whole. In this macroscopic quantum
geometry, an additional coherent entanglement with the
geometrical state creates a new correlation in the mean
positions of otherwise separate bodies, including an in-
common, coherent quantum-geometrical deviation from
their classical trajectories.
The uncertainty in Eq.(3) refers to a wave function slice

on a single spacelike hypersurface, relative to a particular
world line. The wave function is time-invariant, since it
respects the symmetries of bodies at rest in Minkowski
space. As usual, the wave function itself is not observed
in any physical measurement. However, the spread of the
wave function leads to random results, or noise, in a time
series of comparisons of the position of a body relative to
others, with amplitude given by Eq.(3), on a timescale of
the order of |x̄|/c. Because of the coherence, neighboring
elements of an apparatus mostly fluctuate together, even
if there is no physical connection between them apart
from relative proximity. The correlation is not perfect;
deviation from perfect correlation at high frequencies is
again given by the same amplitude (Eq.3), with |x̄| corre-
sponding to the separation of the elements. Detection of
the noise requires a nonlocal, bidirectional experiment—
one that measures relative positions of bodies on widely
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Macroscopic limit is classical geometry 

 

 

 

Angles indeterminate at the Planck scale: quantum geometry 

Approximately classical on large scales 

Information content in sphere of radius R: 

 

 

 

Agrees with covariant/ holographic entropy bound from gravity 

Motivates choice of Planckian commutator 
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certainty relations for a body at position x̄
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3-sphere of radius R relative to a body at the origin. For
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world line. The wave function is time-invariant, since it
respects the symmetries of bodies at rest in Minkowski
space. As usual, the wave function itself is not observed
in any physical measurement. However, the spread of the
wave function leads to random results, or noise, in a time
series of comparisons of the position of a body relative to
others, with amplitude given by Eq.(3), on a timescale of
the order of |x̄|/c. Because of the coherence, neighboring
elements of an apparatus mostly fluctuate together, even
if there is no physical connection between them apart
from relative proximity. The correlation is not perfect;
deviation from perfect correlation at high frequencies is
again given by the same amplitude (Eq.3), with |x̄| corre-
sponding to the separation of the elements. Detection of
the noise requires a nonlocal, bidirectional experiment—
one that measures relative positions of bodies on widely
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Approach to the classical limit  

Angles become less uncertain (more classical, ray-like) at  larger 
separations L: 

 

 

Transverse positions become more uncertain at larger separations L: 

 

 

 

Not the classical limit of field theory 

Far fewer degrees of freedom 

Directions have intrinsic “wavelike” uncertainty 

Δθ1Δθ2 > lP / L

Δx1Δx2 > lPL
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Wave interpretation 

Spacelike-separated event intervals are defined with clocks and light 

But transverse positions defined by Planckian waves are uncertain by 
the diffraction limit,    

 

 much larger than the Planck length 

 

 

Wigner (1957): quantum 
limits with one spacelike  
dimension and physically-
realizable clocks 

LctP

€ 

L
ctP

LctP

Add transverse dimension and 
Planck frequency limit: new 
position uncertainty 
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Quantum-geometrical uncertainty and fluctuations 

Transverse uncertainty >> Planck length for large L 
àfluctuations in nonlocal transverse position 

Δx ~ ctPL
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Coherence of Quantum-Geometrical Fluctuations 

Larger scale modes dominate total displacement 
 
Displacement of  nearby bodies is not independent 
 
Causal diamonds: local effects do not depend on choice of distant observer 
 
Depends only on position and no other property of a body 
 
Geometrical position states of neighboring bodies are entangled 
 
Massive bodies “move together”:  share almost the same displacement if 
they are in almost the same place, compared with separation 
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Quantum Geometry is only important for large masses 

Standard Heisenberg uncertainty between two 
measurements of mean position at different times 
 
 
 
(standard interferometer limit) 
 
This dominates geometrical uncertainty unless mass is 
greater than the Planck mass 
 
Field theory works great for elementary particle 
experiments (localized, but much larger than Planckian)  

4

separated world lines, in directions transverse to their
separation.

The predicted fluctuations[17], while much larger than
the Planck length, are too small to detect with current
laboratory measurements of microscopic systems, such
as atoms or molecules, which are dominated by standard
Heisenberg uncertainty. Indeed, the new e↵ect dominates
standard quantum uncertainty only for relatively high
mass systems. If the mass m of a body is less than the
Planck mass, m < mP ⌘ h̄/c

2
tP = 2.176 ⇥ 10�5 g, the

standard Heisenberg uncertainty[18] for the variance in
a body’s position di↵erence measured at two times sepa-
rated by a duration ⌧ ,

�x

2 ⌘ h(x(t)� x(t+ ⌧))2i � 2h̄⌧/m, (6)

is greater than the quantum-geometrical position uncer-
tainty at separation |x̄| = c⌧ . Quantum-geometrical un-
certainty is therefore negligible on the mass scale of ele-
mentary particles, which accounts for why classical space-
time is such a good approximation for systems involving
small numbers of particles, and field theory agrees so well
with precision tests in microscopic experiments.

The purely transverse character also implies
zero quantum-geometrical uncertainty— a classical
geometry— for measurements that involve interactions
with particles propagating in only a single direction,
even over cosmic distances. The theory therefore is
unconstrained by studies of light from distant sources
that constrain some other kinds of Planck-scale Lorentz
invariance violation.[19, 20]

The most promising experimental test comes from pre-
dicted noise[17] in interferometer signals. A Michelson
interferometer creates a coherent state of many photons
spatially extended along two macroscopic arms. The
measured signal from the interfered light depends sen-
sitively on positions of three mirrors, a beamsplitter and
two end mirrors, at three di↵erent times. The world-
lines of the mirrors are widely separated in the two direc-
tions, so quantum-geometrical position uncertainty leads

to noise, or fluctuations in the signal. For arm length L,
the amplitude of position fluctuations is given by Eq. (3)
with |x̄| ⇡ L, with timescale ⌧ ⇡ L/c. If two separate in-
terferometers have mirrors in nearly the same positions,
separated by much less than their size L, their geomet-
rical position states are entangled, so the fluctuations in
their signals are correlated. An experiment based on this
concept, currently under construction at Fermilab, is de-
signed to achieve the required Planckian sensitivity for a
detection, or to convincingly rule out the theory.

I am grateful to D. Berman, A. Chou, S. Meyer, and
M. Perry for useful discussions. This work was supported
by the Department of Energy at Fermilab under Contract
No. DE-AC02-07CH11359.
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Two ways to study small scales 

particle colliders measure 
microscopic products of 
localized  events 

Interferometers compare 
macroscopic positions of 
massive bodies: better to 
probe emergent Planckian 
quantum geometry 
 16 



3 world lines: beamsplitter and 
two end mirrors 
 
3 overlapping, entangled world 
cylinders 
 
4 events contribute to 
interferometer signal at one 
time 
 
Measurement is coherent, 
nonlocal in space and time, 
includes positions in two 
noncommuting directions 

Space-time of Michelson interferometer 
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Quantum-geometrical noise in Michelson interferometer 

 

 

 

 

Signal measures difference of 
beamsplitter position in two 
noncommuting directions 
 
Causal diamond duration is 
twice the arm length 
 
Geometrical uncertainty leads 
to fluctuations  
 
 
 
For durations  

  
  

detector 

  

Input 
wavefront 

Δx12
2 ≈ 2Δx1Δx2 ≈ lPcτ
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cτ < 2L

beamsplitter 



Interferometers can reach Planckian sensitivity 

Over short (~ size of apparatus ~ microsecond) time intervals, 
interferometers can reach Planck precision (~ attometer jitter)  

 

Fractional random variation in differential frequency or position 
between two directions over time interval τ	



 

 

 
 

Compare to best atomic clocks (over longer times): 
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For comparison, the current atomic clock frequency inaccuracy, measured over an interval of 164967 seconds, is[28]

��(⇥)

�
= 2.8� 10�15/

�
⇥/sec. (11)

Thus the holographic limit is far beyond the currently attainable level of absolute time measurements using scalar
clocks. However, over short (but still macroscopic) time intervals, Planck-scale holographic noise in relative phase
anisotropy in di⇥erent directions may be detectable in cross-correlations of interferometers. For times ⇥ 2L/c (that
is, up to microseconds for laboratory-scale machines), interferometers are, in this limited di⇥erential sense, by far the
most stable clocks.[29]

This work was supported by the Department of Energy, and by NASA grant NNX09AR38G at the University of
Chicago.
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Based on the above interpretation of the uncertainty, we adopt the following rule for estimating cross correlations.
Transverse holographic displacements are the same to first order on the spacelike surface defined by each null plane
wavefront, and decorrelate only slowly (to second order in ⌅ for each mode) with transverse separation. Thus, the
di⇤erential phase perturbations in the two machines are almost the same when both pairs of laser wavefronts are
traveling in the same direction at the same time in the lab frame, with small transverse separation compared to the
propagation distance. If they are displaced or misaligned the correlation is reduced by appropriate directional and
overlap projection factors. For example, if two aligned interferometers are displaced by a small distance �L along
one axis, where �L << L, the cross correlation of measured phase displacement (in length units) becomes

⇥⇥(⇤) ⇤ (2ctP /⇥)(2L� 2�L� c⇤), 0 < c⇤ < 2L� 2�L (35)
= 0, c⇤ > 2L� 2�L. (36)

That is, the cross correlation is the same as the autocorrelation of the largest interferometer that would fit into the
in-common spacetime volume between the two. These formulae provide concrete predictions for experimental tests
of the hypothesis (2). Assuming the theory is correctly normalized by black hole thermodynamics, there are no free
parameters in the predictions, so there is a clearly defined experimental target.

Another simple configuration to consider is two adjacent interferometers, with one arm of each parallel and adjacent
to the other but with the other arms extending in opposite directions. In this setup the spacelike surfaces defined by
wavefronts in the opposite arms never coincide. In addition, the beamsplitters are at right angles to each other and
therefore the phases of reflected light depend on precisely orthogonal components of displacement, so their signals
should be uncorrelated. This result can be derived in the operator description. For the configuration just described,
with opposite arms along axis 1, the cross correlation of the two machines A and B at zero lag (⇤ = 0) is

⌅XAXB⇧ = ⌅[�x1A(t)� x2A(t� 2L/c)][x1B(t)� x2B(t� 2L/c)]⇧ (37)
= ⌅�x1A(t)x1B(t) + x2A(t� 2L/c)x2B(t� 2L/c) (38)

�x2A(t� 2L/c)x1B(t) + x1A(t)x2B(t� 2L/c))⇧. (39)

In machine A, a positive displacement along axis 1 lengthens arm 1, while in machine B it shortens it; this appears as
the opposite signs for the machines in line (37). The terms in line (38) then cancel, while the summed terms in line
(39) average to zero by symmetry, so the overall cross correlation vanishes. Therefore we expect the cross correlation
in this setup to vanish, providing a useful configuration for an experimental null control. Note that cross correlation
in this setup would not vanish for fluctuations caused by gravitational waves or metric fluctuations.

COMPARISON WITH EXPERIMENTS

It is interesting to compare this Planckian directional position fluctuation with the precision of the best atomic
clocks. In the language of frequency error (or Allan variance) often used to characterize clocks, with the adopted
normalization (Eq. 29), the fractional standard deviation over a time ⇤ is

��(⇤)
�

⇤ �t(⇤)/⇤ =

⇥
2⇥ 5.39⇥ 10�44sec

⇥⇤
= 1.8⇥ 10�22/

�
⇤/sec. (40)

For comparison, frequency error in the best atomic clocks is currently [33] ��(⇤)/� = 2.8⇥ 10�15/
�

⇤/sec. Thus the
holographic limit is far beyond the currently practicable level of time measurements using atomic clocks. It is not
possible for example to measure Planckian phase variations between local time standards.

However, over short (but still macroscopic) time intervals, Planckian holographic noise in relative phase anisotropy
in di⇤erent directions may be detectable using interferometers. For times ⇤ 2L/c, interferometers are, in this limited
di⇤erential sense, by far the most stable clocks. The sensitivities attainable by current and planned experiments are
shown in Figure (1), along with the holographic noise prediction, Eq. (40). An expanded view (Figure 2), comparing
with a wider range of experimental approaches, shows that interferometry is currently the most promising approach
to detect the e⇤ect.

Existing gravitational wave interferometers, such as LIGO, VIRGO, and GEO-600, have approximately the required
phase sensitivity to reach the level in Eq.(40). The plotted experimental points are derived by taking published noise
curves[34, 35] at the most sensitive frequency, and evaluating the corresponding rms arm-di⇤erence fluctuation in a
single wave cycle at that frequency. The equivalent estimate is also shown for the proposed spaceborne interferometer,
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 Response of simple Michelson interferometer 

 spectral density of noise in position at frequency f,  in apparatus of size L: 

 
Depends only on Planck scale and L 
 
Measured noise is not sensitive to modes longer than 2L 
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autocorrelation function for a single interferometer, defined as

⇥(⇥) ⇥ lim
T!1

(2T )�1

� T

�T
dtX(t)X(t + ⇥) ⇥ ⇧X(t)X(t + ⇥)⌃. (27)

The mean square displacement over an interval ⇥ is then related to the correlation function by

⇧[X(t)�X(t + ⇥)]2⌃ = 2⇧X2⌃ � 2⇥(⇥) (28)

The Planckian random walk described above leads over short intervals to a mean square displacement linear in ⇥ :

⇧[X(t)�X(t + ⇥)]2⌃ = c2tP ⇥(2/�), (29)

where we have normalized the coe⌅cient to agree with the value of �X2 = c⇥⌅0P = c2⇥ tP (2/�) derived above from
the wavepacket theory normalized to black hole entropy. It is expected that the simple random-walk described by Eq.
(29) should hold for ⇥ << 2L/c, since the size of the apparatus should not a⇤ect the behavior.

For c⇥ = 2L, the autocorrelation must vanish, because the random walk in phase is limited by the size of the
apparatus. The light in the two directions of the interferometer is not the same as waves arriving from infinity, but
is prepared di⇤erently, by interactions with the beamsplitter. The beamsplitter has a definite (classical) position
at any given time; however, the light from this one instant enters the detector at times separated by 2L/c, having
propagated in di⇤erent directions. The random walk is thus bounded; an interferometer does not measure holographic
fluctuations of larger physical size, but only those within the causal boundaries defined by a single light round trip
⇥ = 2L/c, the longest time interval over which relative phases in the two directions experience a di⇤erential random
walk that a⇤ects the measured phase. If one arm is regarded as a reference clock, the train of pulses used to compare
with the other arm only has a “memory” lasting for a time 2L/c before it is “reset”.

These constraints lead to an estimate of the overall correlation function that is su⌅ciently precise to design an
exploratory experiment. The total variance is ⇧X2⌃ = ⇥(⇥ = 0) = 4ctP L/�. Using Eqs.(28) and (29), that is, simply
extrapolating the linear behavior to ⇥ = 2L/c, the autocorrelation function then becomes

⇥(⇥) = (2ctP /�)(2L� c⇥), 0 < c⇥ < 2L (30)
= 0, c⇥ > 2L. (31)

The time-domain correlation fixes other measurable statistical properties, including the frequency spectrum. The
spectrum ⇥̃(f) is given by the cosine transform,

⇥̃(f) = 2
� 1

0
d⇥⇥(⇥) cos(⇥⇤), (32)

where ⇤ = 2�f . Integration of this formula using Eq.(30) gives a prediction for the spectrum of the holographic
displacement noise,

⇥̃(f) =
4c2tP

�(2�f)2
[1� cos(f/fc)], fc ⇥ c/4�L. (33)

The spectrum at frequencies above fc oscillates with a decreasing envelope that scales like ⇥̃(f) ⌅ f�2. At frequencies
much higher than fc, the mean square fluctuation in a frequency band �f goes like ⇥̃(f)�f ⌅ (�f/f)(c2tP /f). This
is independent of L, as it should be, and shows the increasing variance in position as f decreases.

The apparatus size acts as a cuto⇤; fluctuations from longer longitudinal modes do not add to the fluctuations,
and the spectrum at frequencies far below fc approaches a constant. In particular, the mean square displacement
averaged over a time T much longer than 2L/c is ⇤ (4ctP L/�)(2L/cT ), showing what has already been stated, that
the e⇤ect in a given spatial volume decreases in a time averaged experiment. This simply reflects the fact that the
frequency spectrum of the displacement is flat at frequencies far below the inverse system size.

These results can be extended to estimate the cross correlation for two interferometers, including the cases when
they are slightly displaced from each other or misaligned. Let XA, XB denote the apparent arm length di⇤erence in
each of two interferometers A and B. The cross correlation is defined as the limiting average,

⇥(⇥)⇥ ⇥ lim
T!1

(2T )�1

� T

�T
dtXA(t)XB(t + ⇥) ⇥ ⇧XA(t)XB(t + ⇥)⌃. (34)
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autocorrelation function for a single interferometer, defined as

⇥(⇥) ⇥ lim
T!1

(2T )�1

� T

�T
dtX(t)X(t + ⇥) ⇥ ⇧X(t)X(t + ⇥)⌃. (27)

The mean square displacement over an interval ⇥ is then related to the correlation function by

⇧[X(t)�X(t + ⇥)]2⌃ = 2⇧X2⌃ � 2⇥(⇥) (28)

The Planckian random walk described above leads over short intervals to a mean square displacement linear in ⇥ :

⇧[X(t)�X(t + ⇥)]2⌃ = c2tP ⇥(2/�), (29)

where we have normalized the coe⌅cient to agree with the value of �X2 = c⇥⌅0P = c2⇥ tP (2/�) derived above from
the wavepacket theory normalized to black hole entropy. It is expected that the simple random-walk described by Eq.
(29) should hold for ⇥ << 2L/c, since the size of the apparatus should not a⇤ect the behavior.

For c⇥ = 2L, the autocorrelation must vanish, because the random walk in phase is limited by the size of the
apparatus. The light in the two directions of the interferometer is not the same as waves arriving from infinity, but
is prepared di⇤erently, by interactions with the beamsplitter. The beamsplitter has a definite (classical) position
at any given time; however, the light from this one instant enters the detector at times separated by 2L/c, having
propagated in di⇤erent directions. The random walk is thus bounded; an interferometer does not measure holographic
fluctuations of larger physical size, but only those within the causal boundaries defined by a single light round trip
⇥ = 2L/c, the longest time interval over which relative phases in the two directions experience a di⇤erential random
walk that a⇤ects the measured phase. If one arm is regarded as a reference clock, the train of pulses used to compare
with the other arm only has a “memory” lasting for a time 2L/c before it is “reset”.

These constraints lead to an estimate of the overall correlation function that is su⌅ciently precise to design an
exploratory experiment. The total variance is ⇧X2⌃ = ⇥(⇥ = 0) = 4ctP L/�. Using Eqs.(28) and (29), that is, simply
extrapolating the linear behavior to ⇥ = 2L/c, the autocorrelation function then becomes

⇥(⇥) = (2ctP /�)(2L� c⇥), 0 < c⇥ < 2L (30)
= 0, c⇥ > 2L. (31)

The time-domain correlation fixes other measurable statistical properties, including the frequency spectrum. The
spectrum ⇥̃(f) is given by the cosine transform,

⇥̃(f) = 2
� 1

0
d⇥⇥(⇥) cos(⇥⇤), (32)

where ⇤ = 2�f . Integration of this formula using Eq.(30) gives a prediction for the spectrum of the holographic
displacement noise,

⇥̃(f) =
4c2tP

�(2�f)2
[1� cos(f/fc)], fc ⇥ c/4�L. (33)

The spectrum at frequencies above fc oscillates with a decreasing envelope that scales like ⇥̃(f) ⌅ f�2. At frequencies
much higher than fc, the mean square fluctuation in a frequency band �f goes like ⇥̃(f)�f ⌅ (�f/f)(c2tP /f). This
is independent of L, as it should be, and shows the increasing variance in position as f decreases.

The apparatus size acts as a cuto⇤; fluctuations from longer longitudinal modes do not add to the fluctuations,
and the spectrum at frequencies far below fc approaches a constant. In particular, the mean square displacement
averaged over a time T much longer than 2L/c is ⇤ (4ctP L/�)(2L/cT ), showing what has already been stated, that
the e⇤ect in a given spatial volume decreases in a time averaged experiment. This simply reflects the fact that the
frequency spectrum of the displacement is flat at frequencies far below the inverse system size.

These results can be extended to estimate the cross correlation for two interferometers, including the cases when
they are slightly displaced from each other or misaligned. Let XA, XB denote the apparent arm length di⇤erence in
each of two interferometers A and B. The cross correlation is defined as the limiting average,

⇥(⇥)⇥ ⇥ lim
T!1

(2T )�1

� T

�T
dtXA(t)XB(t + ⇥) ⇥ ⇧XA(t)XB(t + ⇥)⌃. (34)

Interferometer position noise spectrum, including transfer function 
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LIGO (2L=8km) design is better for gravitational waves, not for quantum geometry 

GEO600 (2L=1200m) is already close to quantum geometry prediction 

(measured noise) 

Fermilab Holometer (2L=80m) is designed to find or rule out this effect  



“Interferometers as Probes of Planckian Quantum Geometry” 
 

CJH, Phys Rev D 85, 064007 (2012)  

“Covariant Macroscopic Quantum Geometry” 

 

CJH, arXiv:1204.5948 

 

Phenomenon lies beyond current predictive scope of well tested theory 

There is reason to suspect new physics at the Planck scale 

 Motivates an experiment! 

 

“Physics is an experimental science” 

                                                                             --I. I. Rabi 
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The Fermilab Holometer  
 

time 

space 

Spacetime diagram of 
an interferometer 

We are developing a machine 
specifically to probe Planckian 
position fluctuations: 
 
“Holographic Interferometer” 
 
 
More detail: talk by J. Steffen 

C. Hogan,  July 2012 25 



In the Oxford English Dictionary 

26 

4/14/12 9:17 AMholometer, n. : Oxford English Dictionary

Page 1 of 1http://www.oed.com.proxy.uchicago.edu/viewdictionaryentry/Entry/87808?print

Oxford University Press
Copyright © 2012 Oxford University Press . All rights reserved.

Your access is brought to you by:
University of Chicago

Pronunciation:

 

holometer, n.
  /həʊˈlɒmɪtə(r)/

Etymology:  < HOLO- comb. form + -METER comb. form , Compare French holomètre (1690 Furetière), < modern

Latin holometrum , < Greek ὁλο- HOLO- comb. form + -METER comb. form .

  A mathematical instrument for making all kinds of measurements; a
pantometer.

1696   E. PHILLIPS New World of Words (ed. 5) ,   Holometer, a Mathematical Instrument for the easie
measuring of any thing whatever, invented by Abel Tull.

1728   E. CHAMBERS Cycl. (at cited word),   The Holometer is the same with Pantometer.

1830   Mechanics' Mag. 14 42   To determine how far the holometer be entitled to supersede the sector in
point of expense, accuracy or expedition.

holometer, n.
Second edition, 1989; online version March 2012. <http://www.oed.com.proxy.uchicago.edu/view/Entry/87808>;
accessed 14 April 2012. Earlier version first published in New English Dictionary, 1899.

2

2

Oxford English Dictionary | The definitive record of the English
language
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Holometer Design Principles 

Direct test for quantum-geometrical noise 
Positive signal if it exists 
Null configurations to distinguish from other noise 

 
Sufficient sensitivity 

Achieve sub-Planckian sensitivity  
Provide margin for prediction 
Probe systematics of perturbing noise 

 
Measure signatures and properties of quantum-geometrical noise 

Frequency spectrum 
Time-domain correlation function 
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Experiment Concept 

Measurement of the correlated optical phase fluctuations in a pair of 
isolated but collocated power recycled Michelson interferometers 
 

exploit the spatial coherence of quantum-geometrical noise 

 

measure at high frequencies (MHz) where other correlated noise is small  

 

 

!m
e	
  

space	
  

World lines of beamsplitters 

Overlapping spacetime volumes -> correlated  fluctuations 
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Status of the Fermilab Holometer 

Team:   
Fermilab (A. Chou, H. Glass, G. Gutierrez,  CJH,  J. Steffen, C. Stoughton, R. 

Tomlin, J. Volk, W. Wester)  

MIT (R. Weiss, S. Waldman, M. Evans)  

University of Chicago (S. Meyer, CJH + students R. Lanza, L. McCuller, B. 
Brubaker, J. Richardson, E. Hall, J. Zelenty, B. Kamai) 

University of Michigan (R. Gustafson) 

includes LIGO experts 

Under construction at Fermilab 
Funded mostly by A. Chou Early Career Award 

Power-recycled 40m interferometer operated with finesse  ~100 

Developing & testing detectors, electronics, control systems 
Vacuum systems of both interferometers are complete 
Results expected in a year or two 
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Not foamlike! 
 
Not at the edge of the 
universe!  
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BATAVIA, ILLINOIS—The experiment looks 
like a do-it-yourself project, the scientifi c 
equivalent of rebuilding a 1983 Corvette in 
your garage. In a dimly lit, disused tunnel 
here at Fermi National Accelerator Labora-
tory (Fermilab), a small team of physicists 
is constructing an optical instrument that 
looks like water pipes bolted to the floor. 
Three scientists huddle within a makeshift 
tent—really a plastic sheet the size of a table-
cloth—to install a high-precision mirror. 
Nitrogen from a tank fl ows under the plas-
tic to keep the mirror clean. “It doesn’t look 
very impressive, but it’s the equivalent of a 
class 100 clean room—the best you can buy,” 
says Craig Hogan, a theorist at Fermilab and 
the University of Chicago in Illinois.

A ratchet clicks as a physicist inside the 
tent tightens a bolt. Another shouts, “The 
front one, not the back one! The front one, 
not the back one!” As implausible as it 
seems, the homey experiment could revolu-
tionize scientists’ conception of the fabric of 
the universe—if Hogan is right.

Known as the Fermilab holometer, the 
experiment aims to test one interpretation of 
the so-called holographic principle. The prin-
ciple states that the amount of information 
that can be crammed into a region of space 
and time, or spacetime, is proportional to the 
region’s surface area. That’s odd, as after all, 
the number of computer hard drives that fi t 

in a room increases with the room’s volume, 
not the area of its walls. If the holographic 
principle holds, then the universe is a bit like 
a hologram, a two-dimensional structure that 
only appears to be three-dimensional. Prov-
ing that would be a big step toward formu-
lating a quantum theory of spacetime and 
gravity—perhaps the single biggest chal-
lenge in fundamental physics.

The principle implies a kind of informa-
tion shortage that, in Hogan’s interpretation, 
makes it impossible to say precisely where 
an object is. “Think back to kindergarten; 
you know that something is either here or it’s 
there,” Hogan says. “It’s so obvious that it’s 
not clear that [position] is a mystery.” In fact, 
Hogan says, position is inherently uncertain, 
and the holometer aims to prove that point.

All the experiment takes is a couple 
of million bucks, two lasers, and a few 
months of work. That makes the holometer 
an unusual project for Fermilab, a particle 
physics lab where scientists typically work 
on huge accelerators and hundred-million-
dollar experiments that run for years. “The 
beauty of it is that we have the people who 
can come up with this low-risk, high-reward 
experiment,” says Fermilab’s Raymond 
Tomlin. “It’s one shot, and if you discover 
something you go to Stockholm [to collect a 
Nobel Prize]. And if you don’t see anything, 
you set a limit.”

Not everyone cheers the effort, how-
ever. In fact, Leonard Susskind, a theo-
rist at Stanford University in Palo Alto, 
California, and co-inventor of the holo-
graphic principle, says the experiment 
has nothing to do with his brainchild. 
“The idea that this tests anything of 
interest is silly,” he says, before refus-
ing to elaborate and abruptly hanging 
up the phone. Others say they worry 
that the experiment will give quantum-
gravity research a bad name.

Black holes and causal diamonds

To understand the holographic prin-
ciple, it helps to view spacetime the 

way it’s portrayed in Einstein’s special the-
ory of relativity. Imagine a particle coasting 
through space, and draw its “world line” on 
a graph with time on the vertical axis and 
position plotted horizontally (see top fi gure, 
p. 148). From the particle’s viewpoint, it is 
always right “here,” so the line is vertical. 
Now mark two points or events on the line. 
From the earlier one, imagine that light rays 
go out in all directions to form a cone on the 
graph. Nothing travels faster than light, so 
the interior of the “light cone” contains all 
of spacetime that the fi rst event can affect.

Similarly, imagine all the light rays that 
can converge on the later event. They defi ne 
another cone that contains all the space-
time that can infl uence the second event. The 
cones fence in a three-dimensional, diamond-
like region. According to special relativity, 
all observers will agree about which points 
are inside or outside the diamond, no matter 
how they are moving. The holographic prin-
ciple states that the amount of information 
that such a “causal diamond” can hold varies 
with its surface area.

That might seem like a perverse idea, but 
it follows from physicists’ analysis of black 
holes. A black hole is a region of extremely 
strong gravity produced when, for exam-
ple, a star collapses to a point, cramming 
an enormous mass into an infi nitesimally 
small volume. Within a certain distance of 
the point, gravity grows so strong that even 
light cannot escape.

That distance defi nes a sphere in space 
called the “event horizon.” In the 1970s, 
theorists deduced that the amount of infor-
mation contained in a black hole depends 
on the surface area of its horizon. One bit 
of information—which can be 0 or 1—
can be encoded in each “Planck area,” an 
area smaller than 10–69 square meters. Jacob 

Sparks Fly Over Shoestring Test
Of ‘Holographic Principle’
A team of physicists says it can use lasers to see whether the universe stores information 
like a hologram. But some key theorists think the test won’t fl y

P H Y S I C S

Hands-on. Student Benjamin Brubaker tin-

kers with the Fermilab holometer.
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Not a test of the holographic principle! 
Drives theorists nuts! 



Physics Outcomes 

If noise is not there,  
Set a sub-Planckian upper limit on commutator, in a certain interpretation 

of emergent space-time 

 
Information density of macroscopic positions > holographic bound 

 

If it is detected,   
 

experiment probes Planckian quantum geometry 
 

    Information density of macroscopic positions ~ holographic bound 
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