Beyond the Standard Model
Research at Jefferson Lab:
The DarkLight Experiment Status

James R. Boyce
Jefferson Lab (JLab)
On behalf of the DarkLight Participants
July 18, 2012
8th Patras Workshop on Axions, WIMPs and WISPs
Chicago and Fermilab, USA

The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this
manuscript for U.S. Government purposes. This work supported by the Office of Naval Research Award N00014-06-1-1168,
the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, and by
DOE under contract DE-AC05-06OR23177.
Outline

• Background
• DarkLight – The Basic Concept
• Participants
• Proposals – PAC 37, PAC 39
• Detector/Experiment System
• Background Radiation Measurements
• e-beam/target Test Experiments
• Possible Timeline
• Acknowledgements
• References
Astronomical Observations:

Galaxy rotation implies Dark Matter
Universe expansion rate implies Dark Energy

Bullet Nebula: blue is Dark Matter

Previously Explored Dark Matter Regions

Log_{10} (mass of Dark Matter particle in eV)

Log_{10} (coupling constant)

Atoms ~5%
Dark Matter ~23%
Dark Energy ~72%

Ref: Jaekel and Ringwald 1002;0329v1
DarkLight Participants

Spokespersons: Peter Fisher and Richard Milner

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and the Bates Research and Engineering Center, Middleton MA 01949

Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606

M. Freytsis

Physics Dept., U.C. Berkeley, Berkeley, CA

R. Fiorito, P. O'Shea

Institute for Research in Electronics and Applied Physics University of Maryland, College Park, MD R. Alarcon, R. Dipert

Physics Department, Arizona State University, Tempe, AZ

G. Ovanesyan
Los Alamos National Laboratory, Los Alamos NM

T. Gunter, N. Kalantarians, M. Kohl

Physics Dept., Hampton University, Hampton, VA 23668 and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606

I. Albayrak, M. Carmignotto, T. Horn

Physics Dept., Catholic University of America, Washington, DC 20064

D. S. Gunarathne, C. J. Martoff, D. L. Olvitt, B. Surrow, X. Li

Physics Dept., Temple University, Philadelphia, PA 19122

E. Long

Physics Dept., Kent State University, Kent, OH, 44242

R. Beck, R. Schmitz, D. Walther

University Bonn, D - 53115 Bonn Germany

K. Brinkmann, H. Zaunick

II. Physikalisches Institut Justus-Liebig-Universitt Giessen, D-35392 Giessen Germany

W. J. Kossler

Physics Dept., College of William and Mary, Williamsburg VA 23185
High Intensity, Low Energy Electron Beam
Using JLab’s FEL on
Diffuse Hydrogen Gas Target

implies Luminosity: 1 ab^{-1}/month

“Dark Force Detection in Low Energy e-p Collisions”
[Freytsis, Ovanesyan, JDT: arXiv:0909.2862 (JHEP 1001;111)]
JLAB’s IR/UV FEL Layout

FEL DM Search

relevant characteristics:
e- beam energy: 80 – 130 MeV
e- beam rate: pulsed to CW
e- beam current: up to 5 mA
FEL IR wavelength: 0.9 – 2.2 μm
FEL is TUNEABLE
Light is linearly polarized.
DarkLight Experiment: Schematic Layout
DarkLight Windowless Hydrogen Gas Target

DarkLight Silicon Detector Systems

Silicon Central Detector Silicon Forward Detector (SFD)
Mainly interested in this region for Mollers
DarkLight – Modeling Moeller Events

10 events

200 events
DarkLight/FEL Layouts

Beam/Target Tests

Possible DarkLight Location

NaI/PMT detectors & calibration sources

^{137}Cs: 661.7 keV
^{60}Co: 1170.0 keV & 1330.0 keV
Vault photon radiation – Good e-beam & lasing

Everything on: rf, well tuned cw e-beam at 130 MeV

- rf only, no e-beam
- Injector gate valve closed
- Injector only
- e-beam only
- e-beam only

J.R. Boyce. 8th Patras Workshop. Chicago IL, July 18, 2012. Slide 15
FEL vault neutron radiation levels vs. total RF gradient
FEL Vault Beam-Target Tests & Rad Measurements
<table>
<thead>
<tr>
<th>Major Focus</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEL beam & Radiation limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DarkLight data taking begins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coupling of photon to electron:

\[a = \frac{e^2}{4\pi} \]
Acknowledgements

The speaker would like to express grateful appreciation to the DarkLight Participants and the 8th Patras Workshop on Axions, WIMPs, WISPs Organizing Committees for the opportunity to share and discuss the DarkLight Effort.

References

2. www.jlab.org
3. PAC 37
4. PAC 39
5. Freytsis, Ovanesyan, JDT: arXiv:0909.2862 (JHEP 1001;111)