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® Even if a new neutral particle is discovered at accelerators, one
must still prove that it is the cold dark matter.

Example: active neutrinos are neutral but are hot dark matter.

® |ndirect detection of dark matter is subject to poorly known
astrophysical backgrounds, so it is hard to claim an
unconditional discovery (exception may be gamma-ray line).

® Direct detection seems the best way to prove the existence of
particle dark matter.
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The principle

Rotation curve (Clemens 1985)

3 kpc

Our galaxy is inside a halo of dark matter particles

Image by R. Powell using DSS data
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The principle

Dark matter particles that arrive on Earth
scatter off nuclei in a detector

crystal

/ (or gas
Dark or liquid)
matter

. CRESST
particle

Low-background underground detector
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CDMS
EDELWEISS
DAMA
CRESST
KIMS
DRIFT
XENON
COUPP
CoGeNT
TARP
DMTPC
TEXONO




Recent and near-future detectors

Yang Yang Kamioka
KIMS XMASS
NEWAGE
PICO-LON
Jinping
PANDA-X
TEXONO-CDEX

Homestake
LUX

Soudan
SuperCDMS
CoGeNT

Boulby
SNOLab ZEPLIN
DEAP/CLEAN DRIFT
PIC%ASSI? Modane
EDELWEISS
Canfranc  Gran Sasso
ArDM XENON
ROSEBUD CRESST
ANAIS DAMA/LIBRA
DarkSIDE
WARP
South Pole
DM-ICE
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Background discrimination

Finding the dark matter particles is a fight against background

Directional

discrimination

From Sanglard 2005
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DM Direct Search Progress Over Time (2009)

~1 event kg day!

~1 event 1 tonne! yr’

0o ZEPLIN 111.1
' CDMS Soudan 2008

o+ZEPLIN 111.2

XENON 100kg o WARP140kg
® SuperCDMS
- XI\/IASS 800kg 25 kg

LUX 350kg O

(Gross Masses kg)

o
SuperCDMS

XENON 1000kg 125 kg

LUX-ZEP 3000kg O *,

o

Rick Gaitskell, gm\/\H{J—ﬁﬁ/éTﬁt I'.%E
Gaitskell 2009




Spin-independent (June 2012)
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Ipb = 10-36 cm?2 Updated from Anglehor et al 201 |
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Spin-dependent (June 2012)

Saper-K
W—soﬁ < M/
o [d

T DeepCore (prelim.)

Super-K 2012

Adapted from Danninger at TAUP 201 |, Rott at Neutrino 2012
Ipb = 10-3¢ cm?
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Coming up......

o XMASS (800 kg LXe, Kamioka, 201 1-)

o TEXONO/CDEX (I kg Ge, Jinping, 201 1-)
® SuperCDMS (25kg Ge, Soudan, 2012-)

o |LUX (350 kg LXe, Homestake, 2012-)

® DarkSide (50 kg LAr, Gran Sasso, 2012-)

® COUPP (60 kg CFs3l, SNOLab, 2012-)

e XENON-IT (I ton LXe, Gran Sasso, 2014-)

e DM-ICE, EURECA, DARWIN, PICO-LON and
many many others
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The annual modulation
Drukier, Freese, Spergel 1986

Annual modulation in WIMP flux and detection rate

S =Sy + Sp, cos|w(t — o))

The WIMP bulk
velocity w.r.t. Earth
modulates from
~232+15 km/s to
~232-15 km/s with a
period of one year
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The DAMA modulation

DAMA finds a yearly modulation as

, Bernabei et al 1997-2012
expected for dark matter particles

O

'DAMA/LIBRA ~ 250 kg (0.87 tonxyr)
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The CoGeNT modulation

The CoGeNT “irreducible
excess” (*) modulates with
a period of one year and a
phase compatible with
DAMA’s annual modulation.

Aalseth et al 1 106.0650

(*) Partly due to extra surface events
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The CRESST unexplained excess

67 observed events cannot all be explained by background at 40

total
WIMP signal
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Adapted from Anglehor et al 201 |
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The CRESST unexplained excess

67 observed events cannot all be explained by background at 40

CRESST 1o
CRESST 20
CRESST 2009
- EDELWEISS-II
CDMS-II
XENON100
DAMA chan.
DAMA
CoGeNT

100
WIMP mass [GeV]

m Odel'depen dent Adapted from Anglehor et al 201 |
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Limits from XENON-100, KIMS, CDMS, .....

Upper limit on WIMP-nucleon cross section
from XENON-100 (model dependent)
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3 events observed Aprile et al (XENON-100) |104.2549
|.8+0.6 expected background
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Limits from XENON-100, KIMS, CDMS, .....

KIMS: Csl scintillation detector
(similar to DAMA)

e Excludes inelastic dark matter
* Excludes 60 GeV/c? DAMA region

Without using detectors with large surface o background Kim at TAUP 201 |
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Limits from XENON-100, KIMS, CDMS, .....
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CDMS does not observe an
annual modulation and
constrains its amplitude

Ahmed et al 1203.1309

CDMS

/2 (~Apr.1)

Days Since Jan. 1st

Recoil Energy [CoGeNT keVee]
0.50 1.21 1.85 2.51 3.20

2.27 5 7.3
Recoil Energy [keVnr]

P
3m/2 (~Oct.1) O

model-independent




CoGeNT & DAMA vs. XENON, CDMS, et al
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CoGeNT & DAMA vs. XENON, CDMS, et al

The comparison depends on the model!

— astrophysics model

local density, velocity distribution
— particle physics model

mass, cross section (dependence on spin, velocity, energy, couplings)
— detector response model

energy resolution, quenching factors, channeling fraction

_
Collar Fields 1204.3559
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Basic ideas
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The expected number of events
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The expected number of events

Recoil energy |/ = %M %

Wednesday, July 18, 12




The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , X (astrophysics)
rate physics
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , X (astrophysics)
rate physics
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , X (astrophysics)
rate physics
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Detector response model

From measured energy to recoil energy

Recoil energy (keV)

) = g(Eec, E)

Energy observed in detector, typically
expressed in keV electron equivalent (keVee)

energy
(response function

Typically written as a single Gaussian with mean value

Eee :QE

Quenching factor

and standard deviation 0g, but may be different.
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Detector response model

IOMeV '60

RANDOM

| .
NCIDENCE Monochromatic 'O beam

S through Nal(Tl) scintillator
200 250 300

10 MeV 160
{100} PLANE

Not
channeled
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24 MeV '60
{100} PLANE

% / Scintillation output

VA | i b
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PULSE HEIGHT (CHANNEL NUMBER)

FIG. 2. (a) Pulse-height spectrum from 10-MeV 160
on NaI(T1) for incidence along a random direction. (b)
Pulse-height spectrum from 10-MeV *0 along a {100} Altm an et GI I 9 73 (PhyS.ReV. B 7, I 743)
plane. (c) Pulse-height spectrum from 24-MeV ¥0 along
a {100} plane. A light guide was used in all cases.
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Detector response model

Channeling. If an ion incident onto the crystal moves in the
direction of a symmetry axis or plane of the crystal, it has a
series of small-angle scatterings which maintains it in the open
channel. The ion penetrates much further into the crystal than
in other directions.

From Gemmel 974, Rev. Mod. Phys. 46, | 29
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Detector response model

Blocking. If an ion originating at a crystal lattice site moves in
the direction of a symmetry axis or plane of the crystal, there
is a reduction in the flux of the ion when it exit the crystal,

creating a “blocking dip”.

From Gemmel 1974, Rev. Mod. Phys. 46, | 29
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Detector response model

Channeling in DAMA’s Nal(Tl) is much
less than previously published

Bozorgnia, Gelmini, Gondolo 2010

\ [40% at 2 keV
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100 1000 10%
E (keV)
Bernabei et al. 2008 Bozorgnia, Gelmini, Gondolo 2010
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Detector response model

~ Softler 66

Compilation of
measurements of the
quenching factor Q
in germanium
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Lin et al (TEXONO) 2007
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Detector response model

Compilation of
measurements of the

quenching factor Q
in Nal(TI)
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Chagani et al 0806.1916

This is where one can tweak to

make DAMA and CoGeNT
compatible.
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Detector response model

Compilation of measurements E.. = S1/L,(122keV.,)
of the light efficiency factor Leg 01 (g /5.)
in liquid xenon e \nr/ e

Bernabei 2001
Akimov 2002
Aprile 2005
Chepel 2006
Aprile 2009
Manzur 2010
Plante 2011

X
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4 5 678910 20 30 40 50
Energy [keVnr]

This is where most of the | Aprile et al (XENON100), 1 104.2549
CoGeNT/XENON debate is.
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Detector response model

Quenching factor J :E

Bozorgnia et al 2010

T=293 K

Channeling
This is where one can tweak to

make experiments compatible.
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

recoil article
— (P , xf(astrophysics)
rate physics

Wednesday, July 18, 12




Astrophysics model

How much dark matter comes to Earth?

Local halo density / Velocity distribution

U, t
(astrophysics) = p / f(,1) d’v
'U>'Umin(E) v

Minimum speed to impart energy E, vpin(F) = (ME/pu+96)/vV2ME
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Astrophysics model: local density

Galactic density profile from Aquarius simulations

p(r) o exp (—Ar®)
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Astrophysics model: local density

GeV

— —3
Po = (0.430 £0.113(,) *+ 0.096(,@)) [ 7 (o) = 0-385:£0.027 GeV em

cm?

Ullio, Catena 2009
Salucci et al 2010

300

Local density from |G
galactic modeling

locco, Pato, Bertone, Jetzer 2010

K .5 K N R . 2 .3 K 1 K
po[GeV/em 3] pPo [GeV/em 3]
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Astrophysics model: local density

GeV — (0.3854-0.02 -3
Po = (0.430 +0.113(q,) % ().()96<r@D>)—e . ppu(Fo) = 0.385:40.027 GeV cm

cm?

Ullio, Catena 2009 -
Salucci et al 2010 i

The most direct method, requiring only local
= measurements of the disk contribution and the
gal slope of rotation curve at the Sun’s distance.
Now even more precise with preliminary VERA

GeV

cm?

o — (0.463 +0.044(, ) £ 0.096(7~®D>)

(expect even better at VERA completion and
with GAIA) Honma at NDM | 2

locco, Pato, Bertone, Jetzer 2010
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Astrophysics model: velocity distribution

U, t
The velocity factor n(FE,t) = / /@,
'U>'Umin(E) v

) d3v

e If f(E,1) is non-truncated Maxwellian in detector frame,
n(E,t)is exponential in

e nN(E,1) depends on time (unless WIMPs move with detector)

Example: annual modulation

U(E»t) :770(E)+
Nm (FE) cosw(t — tp)

Drukier, Freese, Spergel 1986
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Astrophysics model: velocity distribution

1,094,107,757 particles

Phase Space Density

F———— 40 kpc —
Density

Diemand, Kuhlen, Madau, Zemp, Moore, Potter, & Stadel
(Nature, 454, 735, Aug. 7" 2008) !

800 kpc
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Astrophysics model: velocity distribution

Inclusion of baryonic disk may lead to a dark disk

Read, Lake,Agertz, De Battista 2008
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Astrophysics model: velocity distribution
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Astrophysics model: velocity distribution

Standard Co-rotating Tsallis

— -
pr = 0.3 GeViem® - " : pr =04 GeViem® -
vou = 220 km/s - vor = 290 km/s
Vese = 600 km/s | I : gy = 0.7
: vy = 35 km/s

/

CDMS-Ge| - I : CDMS-Ge| -
CDMS-Si | | i f CDMS-Si | |
XENON10| | i XENON10| |

Ling 2009
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Astrophysics model

The local density may be “known” within a factor of 2,
but the velocity distribution is still an open question

Analytic models Dark disk

I‘\
5. i \ dark halo+disk (I:] Maxwellian)
1 1

Read et al 2008
Kuhlen et al

""""

Vialacteall

SlOWl)’- rotati ng 1,094,107,757 particles
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N-body simulations
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200 300 400 500 600 —

w [km/s]

Ling 2009

Diemand, Kuhlen, Madau, Zemp, Moore, Potter, & Stadel
(Nature, 454, 735, Aug. 7™ 2008) |

| 800 kpc
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Astrophysics-independent approach

m, =10 GeV

Fox, Liu,Weiner 201 |

Astrophysics factor

2 o0 / '
Px 9 xpC€ / f(?j )dv’
My y

(V)

g(v) [day™"]

POp
nm,

CoGeNT to DAMA with Q=0.3,m,="7 GeV 10~24

10~2°

—26
10 XENON100
XENON10-S2 ==========

CDMS Ge
_o7| CDMS Si SUF
10 CDMS Ge low
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DAMA F——%—i

Q
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>
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~
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=4
~
>
<
o
~~
9]
+~—
)
=
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Q

10 12 14 107

200 400 600
E [kevee] Umin [klll S_l}

Fox, Kopp, Lisanti, Weiner 201 | Frandsen et al 201 |
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Astrophysics-independent approach

Still depends on
particle model

Analysis extends Fox, Liu,
Weiner method to include
energy response function

Gondolo Gelmini 1202.6359
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The expected number of events

number of detector recoil
= (exposure) X ®
events response rate

detector| energy y Counting>
response N response function acceptance

i1 ticl
(reccn) _ (par 1€ e) < (astrophysics)

rate physics
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Particle physics model

What force couples dark matter to nuclei?

Spin-independent and spin-dependent cross sections

particle\  og7(E) + osp(F)
physics | 2m?

Reduced mass p = mM /(m + M)

do 2u°v? do

(B) = Buax 15 = = 4B
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Particle physics model

Exchange scalar, vector, pseudovector, ..... 7

* Supersymmetry
* Extra U(l) bosons
* Extended Higgs sector

* Effective operator approach
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Particle physics model

Scalar and vector currents give spin-independent terms

2
os1(E) = 2|25, + (A~ 2)1,

_ X X X X | |Nuclear density
Effec.tlve fou.r - >€ g >< form factor
particle vertices "

P P n n

Example: neutralino

_ Jhxx9h 9LGxq9Rg
2y 2 = 3 qu) |- Y Paen 3 analin
q h h g q

: ‘F(E)(2

Main uncertainty is (msS§s) (strange content of nucleon)
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Particle physics model

Axial and tensor currents give spin-dependent terms

32u°G?

[azspp(q) + apanSpn(q) + @isnn(Q)]

A

— X X X X
ffective four- IW2G payGy Gy N2 pandn -Gy
particle vertices
P P n n

Example: neutralino

2\/§GFCLP = Z Agq
q

9Zxx9Zqq

2

mz

2

~

q

2 2
9Ligxq T 9IRGxq

Nuclear spin
structure functions

m

Rl \V)

Main uncertainty is nuclear spin structure functions S(q)
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Particle physics model

Nuclear spin structure functions

(0) - / i (r) €97 dr

Jsp(r) = [G8p + Géps(i)] a(i) 6(r — 1)

=1 1.2

0.8;
0.65
0.4]

0.2

Divari, Kosmas, Vergados, 00
Skouras 2000

Main uncertainty is nuclear spin structure functions S(q)
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What particle model for light WIMPs?
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What particle model for light WIMPs?

® |t should have the cosmic cold dark matter density

® |t should be stable or very long-lived (= 10%* yr)

® |t should account for the CoGeNT and DAMA modulations

® |t should be compatible with collider; astrophysics, etc. bounds

® |deally, it would justify apparent incompatibilities between
direct detection experiments

® |deally, it would explain some excessive emissions possibly
observed in Galactic gamma-ray and radio maps
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A few models of light dark matter*

Models References
MSSM neutralino = |... ; Griest 1988; Gelmini, Gondolo, Roulet | 989; Griest, Roszkowski
I99I Bottino et al 2002-1 | ; Kuflik-Pierce; Zurek-2010; Feldman;-Liu;
S Nath-2010; Cumberbatch-et-al- 204 Belli et al 201 I; .....
LSJ beyond-MSSM neutralino Flores, Olive, Thomas |990; Gunion, Hooper, McElrath 2005; Belikoyv,
v Gunion, Hooper, Tait 201 |; Belanger, Kraml, Lessa 1105.4878;......
sneutrino @ ... ;An, Dev, Cai, Mohapatra | | 10.1366; Cerdeno, Huh, Peiro, Seto
1108.0978;.....
minimalist dark matter Veltman,Ydnurain 1989; Silveira, Zee 1985; McDonald |994; Burgess,

Pospelov, ter Veldhuis 2000; Davoudiasl, Kitano, Li, Murayama 2004;

(SM + real singlet scalar)
Andreas et al 2008-10; He,Tandean 1109.1267;.....

technicolor and alike ....; Lewis, Pica, Sannino 1109.3513;.....

kinetically-mixed U(1)’ [ ; Foot 2003-10; Kaplan et al 1105.2073;An, Gao |108.3943;
Fornengo, Panci, Regis | 108.466 | ;Andreas, Goodsell, Ringwald
[109.2869;Andreas | 110.2636; Feldman, Perez, Nath

1109.2901;.......
baryonic U(1)’ Gondolo, Ko, Omura; Cline, Frey 1109.4639; ......
dynamical DM Dienes,Thomas | 106.4546, 1107.0721

* 1-10 GeV WIMP; very incomplete references.
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So many theoretical models!
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