Progress of the SNS Neutron EDM Experiment

Josh Long

Chen-Yu Liu, Hans-Otto Meyer, Mike Snow SNS nEDM Collaboration and Indiana University

Motivation

Expected Sensitivity

Experiment Overview

Systematics

nEDM Research and Development

Readout system: scintillation

Electric Field Generator

Outlook

Office of Nuclear Physics

Test of Discrete Spacetime Symmetries

$$H = -\left(\mu \vec{B} + d_n \vec{E}\right) \cdot \frac{\vec{S}}{|S|}$$

EDM: violates P and T

CPT theorem \rightarrow also CP

Figure: E. N. Fortson, Physics Today 56 6 (2003) 33

$$Y_B = n_B / \gamma \sim 10^{-10}$$

WMAP, PDB (2010)

Sakharov's criteria

- Baryon number violation
 - $\phi \rightarrow \mathsf{B}; \phi \rightarrow \overline{\mathsf{B}} \qquad \Delta \mathsf{B} \neq \mathsf{0}$
- CP violation and C violation R($\phi \rightarrow B$) > R($\phi \rightarrow \overline{B}$)
- Departure from thermal equilibrium $R(\phi \rightarrow B) > R(B \rightarrow \phi)$

EDMs in SM and SUSY

(2005)119; CIPANP 2009

EDMs and SUSY

[1] V. Cirigliano, S. Profumo, M. Ramsey-Musolf, JHEP 07 (2006) 002; ECT* (Nov. 2010)

nEDM Technique: Nuclear Magnetic Resonance

$$H = -\left(\mu \vec{B} + d_n \vec{E}\right) \cdot \frac{\vec{S}}{|S|}$$

• Larmor frequency:

 $\omega_{B} = -\frac{2\mu_{B}B}{\hbar}$

(~ 29.2 Hz for $B \sim 0.1G$)

$$d_n$$
: additional precession: $\omega_E = \frac{2d_n E}{\hbar}$
 $\omega_{E\parallel B} - \omega_{Eanti-\parallel B} \equiv \Delta \omega = \frac{4d_E E}{\hbar}$

- Apply static *B*, *E*||*B*
- Look for $\Delta \omega$ on reversal of *E*

If $d_n = 5 \times 10^{-28}$ e cm, $\Delta \omega = 12$ nHz.

Figure: Physics Today 56 6 (2003) 33

SNS nEDM Experiment Expects Record Figure of Merit

EDM Ene	rgy shift:	$\Delta U =$	$\hbar \Delta \omega_E = 4 d_E E$		
Uncertainty p	orinciple:	$\Delta U \Delta t$ $(\Delta t = d_E \sim d_E)$	$T > \hbar$ measurement time) $\frac{\hbar}{4\Lambda tE}$		
Repeat with N n	eutrons:	$d_E \sim$	$\frac{\hbar}{4\Delta t E \sqrt{N}}$		
	N		Δt	E	$d_{\scriptscriptstyle E}$
Previous (ILL)	~10 ⁸ (UCN from reactor)		130 s (UCN in vacuum)	5 kV/cm (across vacuum)	< 3x10 ⁻²⁶ e-cm
SF LHe	~3 x10 ¹⁰ (spallation, superthermal UCN)		~ 500 s (UCN in LHe)	75 kV/cm (across LHe)	~ 10 ⁻²⁸ e-cm*

Experiment Uses ³He as Detector

R. Golub and S. K. Lamoreaux, Phys. Rep. 237 (1994) 1

- UCN too dilute to detect with magnetometer (SQUID)
- Inject small concentration (~ 10⁻¹¹) of polarized ³He
- Look for reaction: $n + {}^{3}He \rightarrow t + p + 764 \text{ keV}$
 - t, p scintillate in ⁴He
 - Pipe through light guides and detect with PMT

• n + ${}^{3}\text{He} \rightarrow t + p$:

 σ (³He, n: ↑↓singlet) ~ 10⁷ b σ (³He, n: ↑↑ triplet) < 10⁴ b

• $\mu_{\rm He}/\mu_{\rm n}$ = 1.11

³He spins will rotate ahead of n spins in same B

Scintillation light according to $\Phi \sim 1 - P_n P_3 \cos(\omega_{He} - \omega_n) t$

• Independent monitor of ³He spins with SQUIDs

Improved Statistics with Superthermal UCN Source

Ultra-cold neutrons (UCN): E < 300 neV, trapped in material bottles

Previous (ILL): Reactor neutrons (~ meV) slowed in g-field, turbine \rightarrow 5 UCN/cc

Superthermal source: defeating thermal equilibrium

Inelastic scattering off superfluid ⁴He atoms

8.9 Å(\sim 1 meV) incident n transfers all *p*, *E* to phonon, "downscatters" to UCN

Improved Statistics with Superthermal UCN Source

UCN density = (Flux × LHe density × cross-section) × storage time

~ 0.3/cc/s × 500s = 150/cc (30 × previous)

⁴He nucleus does not absorb neutrons

500 s storage time dominated by wall losses and β - decay (886 s)

Improved Statistics with Superthermal UCN Source

First FNPB Cold Beam Flux Measurements

Activation, beta decays, cosmic rays, $\Delta E/E = 0.5 \rightarrow d_n = 3-6 \times 10^{-28}$ ecm

Central Detector System

Polarized cold neutrons from SNS FNPB

nEDM Collaboration: ~ 100 Scientists from 21 Institutes

R. Alarcon, S. Balascuta (Arizona State University)

D. Budker, A. Park, D. Windes (*University of California at* Sondheim, J. Torgerson, P. Volegov (*Los Alamos Berkeley*) National Laboratory)

G. Seidel (*Brown University*)

A. Avakian, P. Bohn, E. Hazen, A. Kolarkar, I. Logashenko, K. Lynch, J. Miller, L. Roberts *(Boston University)*

J. Boissevain, R. Carr, B. Filippone, R. McKeown, M. Mendenhall, A. Perez-Galvan, R. Schmid *(Caltech)* M. Ahmed, M. Busch, H. Gao, Q. Ye, Y. Zhang, W. Zheng, X. Zhu *(Duke University)*

M. Karcz, C.-Y. Liu, J. Long, H.-O. Meyer, M. Snow (Indiana University)

L. Bartoszek (Bartoszek Engineering)

D. Beck, J. Blackburn, A. Chen, P. Chu, C. Daurer, A. Esler, K. Ng, J.-C. Peng, S. Williamson, J. Yoder *(University of Illinois, Urbana-Champaign)*

E. Beise, H. Breuer, T. Langford, J. Rehak, L. Singer (*University of Maryland*)
K. Dow, D. Hassel, E. Ihloff, R. Redwine, J. Seele, E. Tsenlanovich, C. Vidal, P. Wikus, (*MIT*)
D. Dutta, E. Leggett (*Mississippi State University*)
B. Angell, F. Dubose, R. Golub, C. Gould, D. Haase, P. Huffman, D. Kendellen, E. Korobkina, A. Merizalde, C. Swank, A. Young (*North Carolina State University*)
R. Allen, G. Capps, V. Cianciolo, J. Demko, P. Mueller, S. Penttila, T. Williams, W. Yao (*Oak Ridge National Laboratory*)
M. Hayden (*Simon-Fraser University of Tennessee*)

Projected Systematic Errors

Error Source	Systematic error (e-cm)	Comments
Linear vxE (geometric phase)	< 2 × 10 ⁻²⁸	Uniformity of B ₀ field
Quadratic vxE	< 0.5 × 10 ⁻²⁸	E-field reversal to <1%
Pseudomagnetic Field Effects	< 1 × 10 ⁻²⁸	π/2 pulse, comparing 2 cells
Gravitational offset	< 0.2 × 10 ⁻²⁸	With E-field dependent gradients < 0.3nG/cm
Heat from leakage currents	< 1.5 × 10 ⁻²⁸	< 1 pA
vxE rotational n flow	< 1 × 10 ⁻²⁸	E-field uniformity < 0.5%
E-field stability	< 1 × 10 ⁻²⁸	ΔE/E < 0.1%
Miscellaneous	< 1 × 10 ⁻²⁸	Other vxE, wall losses

³He Co-magnetometer

If nEDM = 10^{-26} e·cm, $10 \text{ kV/cm} \rightarrow 0.1 \mu\text{Hz shift}$ \cong B field of 2×10^{-15} T. Co-magnetometer :

Uniformly samples the B Field faster than the relaxation time.

Data: ILL nEDM experiment with ¹⁹⁹Hg co-magnetometer

EDM of ¹⁹⁹Hg < 10^{-28} e-cm (measured); atomic EDM ~ $Z^2 \rightarrow {}^{3}$ He EDM << 10^{-30} e-cm

Under gravity, the center of mass of He-3 is higher than UCN by $\Delta h \approx 0.13$ cm, sets $\Delta B = 30$ pGauss (1 nA of leakage current). $\Delta B/B=10^{-3}$.

Geometric Phase

In a rotating frame (ω_r)

$$\delta\omega = -\frac{\omega_{\perp}^{2}}{\gamma B_{0} - \omega_{r}}$$

• UCNs "rotate" due to specular reflection

$$\omega_r \approx \frac{v}{R}$$

• Gradient adds radial field

$$\omega_{\perp} = \gamma \left(B_{mot} + B_r \right)$$
$$\frac{\delta \omega}{\gamma^2} = -\frac{B_m B_r}{\omega_o - \omega_r} = -\frac{B_r v E}{c \left(\omega_o - v/R \right)}$$

• Sum for UCNs moving clockwise, counterclockwise:

$$\delta\omega = -\frac{\gamma^2}{2} \frac{(\partial B_o/\partial z) E}{c} \frac{v^2}{\omega_o^2 - \omega_r^2}$$

- Effect is significant at level of $10^{\text{-}28}\,e{\cdot}\text{cm}$

$$\frac{\partial B_0}{\partial z}$$
 < 0.1 µG/cm
T > 0.4 K
(increase ³He collisions)

Some recent nEDM R&D activities

• Measure 3He relaxation time (Duke, UIUC)

• Build light system prototype, measure geometry dependent factors, attenuation lengths, transmission from cells to PMTs (Boston, LANL)

- Investigate PMT operation at 4K (IU)
- Observe 3He S/N with SQUIDs (LANL, Duke, IU)
- Measure neutron storage time in coated acrylic cell (LANL)
- Prototype and test valves for 3He transport (UIUC)
- Test evaporative purification of 4He (NCSU)
- Measure 3He polarization after injection into SF 4He (Duke)
- Compatibility study of SQUIDs to HV operations (IU)
- Re-optimize experiment specification to reduce geometric phase background (NCSU, Yale, Caltech)
- Build magnet coil prototypes and verify uniformity requirements (Caltech, ASU)
- Measure LHe dielectric strength at large volumes below 1K (LANL, IU)
- Measure LHe scintillation at 40kV/cm and at 0.4K (LANL, IU)

2012-2014 Focus

(NSAC and Tech. Review Committee recommendations, Summer 2011):

Suitable electrodes and cell materials, test at 75 kV/cm at T < 1K

- **Light collection efficiency**
- **Magnetic design and shielding**

SQUIDS

PULSTAR UCN facility (simultaneous UCN+3He precession, monitoring, dressed spin...)

R&D: Light Collection Efficiency

Requirement: ~20 PE/ 3He capture

	<u>Factor</u>	<u>Value</u>	<u>% Error</u>
	✓ N _{XUV}	4800	15
	🗸 ε _{Ην}	0.76	5
	$\Omega_{\text{TPB}}/4\pi$	0.90	1
	ε _{conv}	0.33	19
	$\checkmark \epsilon_{collect}$	0.21	5
	$\checkmark \epsilon_{coated}$	0.92	5
	ε _{endcaps}	0.87	1
	ε _{holes}	0.97	10
	ε _{gaps}	0.78	5
neasured	✓ g _{AR}	1.05	4
maagurad	$\checkmark \epsilon_{straight-guide}$	0.64	3
measured	V ε _{bend}	0.88	10
	 ε_{PMT} 	0.18	10
	#PE	14.8	32

R&D: LHe Scintillation Dependence on Electric Fields

T. Ito, et al., PRA 85 (2012) 042718

• At IU: measure scintillation from alpha particles (similar to p, 3 H) in SF at 0.4 K and 0–45 kV/cm

 \bullet Prompt scintillation: 40% from $\alpha,$ 60% from ionization-recombination.

•15% overall reduction (little concern)

• Dielectric strength of LHe at 400 mK (and vapor pressure) at least 45 kV/cm

R&D: High Voltage System Prototype Tested at LANL

• Measure breakdown properties of large volumes of LHe

Target: 75 kV/cm at 0.4 K, 7cm gap

Maximum potentials sustained: Normal State (4.38 K): (119 ± 11) kV/cm

SF (2.14 K, cooled by pumping): (58 ± 8) kV/cm Worse at 0.4 K? Pressure or Temperature effect?

R&D: Adjustable-Pressure HV Cryostat (IU)

- Small sealed inner LHe volume with $\sim 1 \text{cm}^3 \text{ HV}$ electrodes, immersed in larger bath
- Small volume pressurized with cold He gas at top; outer bath cooled by pumping (1.5 K)

High breakdown strength preserved if system pressurized (even temporarily at 200 torr) No pressurization needed with electropolished electrodes

R&D: Medium-Scale HV Test Cryostat (LANL)

- Test electrodes and cell materials in more realistic (~ ¼ scale) geometry: 150 kV
- Test at more realistic temperature (0.6 K)

Schedule – US DOE

Project funded jointly – NSF and DOE

Decision	Funding Profile
CD-0 Approve Mission Need	2006
CD-1 Approve Preliminary Baseline Range	2007
Evaluation of critical R&D (technical committees, agencies)	~ Winter 2014
CD-2 Engineering design review	Review + few months
CD-3 Approve Start of Construction	CD-2 + few months
CD-4 Approve Start of Operations	CD-3 + ~5 yr (2018)

Summary

SNS nEDM experiment expects sensitivity of 10⁻²⁸ e-cm

Superthermal UCN in LHe: greater statistics, longer integration times, higher E-fields

Covers much of remaining parameter space of SUSY predictions (*all* of MSSM)

Critical R&D must have conclusions in next ~ 2 years

Estimated construction at SNS: 2014 - 2018

Worldwide neutron EDM program

	Magnetometer	Sensitivity [e-cm]
ILL / "CryoEDM"	Ext SQUID, E=0	$5 imes 10^{-27}$ / $5 imes 10^{-28}$
PNPI / ILL	E=0	$< 1 imes 10^{-26} / < 1 imes 10^{-27}$
PSI	Ext Cs + ¹⁹⁹ Hg	$5 imes 10^{-27}$ / $5 imes 10^{-28}$
SNS	^з Не	~7 × 10 ⁻²⁸
KEK/TRIUMF	¹²⁹ Xe	< 10 ⁻²⁷

Plus... Broad array of searches for EDMs of electron, proton, deuteron, nuclei, atoms, ...