Constraints on axion-like particles from magnetic white dwarfs

Article ref: R. Gill and J. Heyl, 2011, Phys. Rev. D. 84, 085001 ArXiv: 1105.2083

8th Patras Workshop on Axions, WISPs, and WIMPs

- Sub-meV scale pseudo-scalar bosons
- Spin = 0
- Two photon vertex with $g_{a\gamma\gamma}$

- Sub-meV scale pseudo-scalar bosons
- Spin = 0
- Two photon vertex with $g_{a\gamma\gamma}$

No relation between mass and coupling strength

$$m_a \approx 6 \text{ eV} \left(\frac{10^6 \text{ GeV}}{f_a}\right)$$

- Spin = 0
- Two photon vertex with $g_{a\gamma\gamma}$

No relation between mass and coupling strength

8th Patras Workshop on Axions, WISPs, and WIMPs

Magnetic fields in astronomy

8th Patras Workshop on Axions, WISPs, and WIMPs

White dwarfs

- Main sequence stars with $M \lesssim 8 \; M_{\odot}$ leave a compact remnant - a white dwarf
- $M_{WD} \sim 0.6 \ M_{\odot}, \ R_{WD} \sim 1\% R_{\odot} \approx 7 \times 10^8 \ \text{cm} \qquad T_{\text{eff}} \sim 10^3 10^5 \text{K}$

Cat's eye nebula

Copyright @ Addison Wesley

8th Patras Workshop on Axions, WISPs, and WIMPs

White dwarfs

- Main sequence stars with $M \lesssim 8 \; M_{\odot}$ leave a compact remnant - a white dwarf
- $M_{WD} \sim 0.6 \ M_{\odot}, \ R_{WD} \sim 1\% R_{\odot} \approx 7 \times 10^8 \ \mathrm{cm} \qquad T_{\mathrm{eff}} \sim 10^3 10^5 \mathrm{K}$

White Dwarf Stars in M4 PRC95-32 · ST Scl OPO · August 28, 1995 · H. Bond (ST Scl), NASA

8th Patras Workshop on Axions, WISPs, and WIMPs

White dwarfs

8th Patras Workshop on Axions, WISPs, and WIMPs

- Only 10% of WDs are magnetized with $B_s\gtrsim 1~{
m MG}$

8th Patras Workshop on Axions, WISPs, and WIMPs

Magnetism in white dwarfs

- Only 10% of WDs are magnetized with $B_s\gtrsim 1~{
 m MG}$
- Magnetism in WDs is detected through Zeeman spectropolarimetry

8th Patras Workshop on Axions, WISPs, and WIMPs

Magnetism in white dwarfs

- Only 10% of WDs are magnetized with $B_s\gtrsim 1~{
 m MG}$
- Magnetism in WDs is detected through Zeeman spectropolarimetry.
- Generally, several dipole components contribute.

Magnetism in white dwarfs

- Only 10% of WDs are magnetized with $B_s\gtrsim 1~{
 m MG}$
- Magnetism in WDs is detected through Zeeman spectropolarimetry.
- Generally, several dipole components contribute.

Off-centered non-aligned three dipole model

8th Patras Workshop on Axions, WISPs, and WIMPs

Signature of photon-ALP oscillation

Conversion of the E_{\parallel} mode causes an overall dimming of the total intensity

8th Patras Workshop on Axions, WISPs, and WIMPs

Signature of photon-ALP oscillation

The ALP-field acts as a dichroic filter and imparts additional linear polarization

8th Patras Workshop on Axions, WISPs, and WIMPs

What do observations of mWDs tell us?

8th Patras Workshop on Axions, WISPs, and WIMPs

What do observations of mWDs tell us?

The emerging radiation is affected by:

- Magnetic Circular Dichroism bound-free, magneto-bremsstrahlung, cyclotron abroption
- Birefringence Voigt and Faraday effect
- Vacuum Birefringence
- Radiative transfer effects atomic and molecular absorption edges

Typically:

- the optical and UV radiation is highly circularly polarized
- $P_L\sim 5\%$ due to Faraday rotation

8th Patras Workshop on Axions, WISPs, and WIMPs

Atmospheric plasma profile

$$\begin{aligned} & \text{Cold electron-proton} \\ & \rho(r) = \rho_0 \exp\left(-\frac{r - R_\star}{H_\rho}\right) + \rho_\infty \\ & H_\rho = \frac{2k_B T}{m_e g_\star} \simeq 1.65 \times 10^4 \text{ cm} \qquad \rho_0 \sim 10^{-10} \text{ g cm}^{-3} \qquad \rho_\infty \sim 10^{-20} \text{ g cm}^{-3} \end{aligned}$$

$$T \sim 10^4 \text{ K}$$
 $\log(g)(\text{cm s}^{-2}) \simeq 8$

Atmospheric plasma profile

Cold electron-proton plasma
$$\rho(r) = \rho_0 \exp\left(-\frac{r-R_\star}{H_\rho}\right) + \rho_\infty$$

 $H_{\rho} = \frac{2k_B T}{m_e g_{\star}} \simeq 1.65 \times 10^4 \text{ cm} \qquad \rho_0 \sim 10^{-10} \text{ g cm}^{-3} \qquad \rho_{\infty} \sim 10^{-20} \text{ g cm}^{-3}$

$$T \sim 10^4 \text{ K}$$
 $\log(g)(\text{cm s}^{-2}) \simeq 8$

$$\mathfrak{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}(\partial_{\mu}a\partial^{\mu}a - m_{a}^{2}a^{2}) - \frac{1}{4}g_{a\gamma\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}a + \frac{\alpha^{2}}{90m_{e}^{4}}\left[(F_{\mu\nu}F^{\mu\nu})^{2} + \frac{7}{4}\left(F_{\mu\nu}\tilde{F}^{\mu\nu}\right)^{2}\right]$$

8th Patras Workshop on Axions, WISPs, and WIMPs

Vacuum corrections

$$B_c = 4.414 \times 10^{13} \text{ G}$$

8th Patras Workshop on Axions, WISPs, and WIMPs

8th Patras Workshop on Axions, WISPs, and WIMPs

8th Patras Workshop on Axions, WISPs, and WIMPs

$$i\frac{d}{ds}\begin{pmatrix}a\\E_{x'}\\E_{y'}\end{pmatrix} = \begin{pmatrix}\Delta_a - k' & \text{Mixing}\\Mix & \text{Plasma}\end{pmatrix}\begin{pmatrix}a\\E_{x'}\\E_{y'}\end{pmatrix}$$

Stokes Vector

$$I = ||E_{x'}||^2 + ||E_{y'}||^2$$
$$Q = ||E_{x'}||^2 - ||E_{y'}||^2$$
$$U = E_{x'}E_{y'}^* + E_{y'}E_{x'}^*$$
$$V = -i(E_{x'}E_{y'}^* - E_{y'}E_{x'}^*)$$

8th Patras Workshop on Axions, WISPs, and WIMPs

Stokes parameters

8th Patras Workshop on Axions, WISPs, and WIMPs

Constraints on ALP properties

8th Patras Workshop on Axions, WISPs, and WIMPs

Constraints on ALP properties

Gill & Heyl (2011)

8th Patras Workshop on Axions, WISPs, and WIMPs

July 20<u>12</u>

ALP physics with NSs

8th Patras Workshop on Axions, WISPs, and WIMPs

P-Pdot diagram of NSs

8th Patras Workshop on Axions, WISPs, and WIMPs

P-Pdot diagram of NSs

8th Patras Workshop on Axions, WISPs, and WIMPs

ALP physics with NSs

- Extremely strong fields: $B\gtrsim 10^{12}~{
 m G}$
- Effective temperature: $T_s \sim 0.5 \ {\rm keV}$
- Want to look at the thermal spectrum
- Vacuum polarization becomes important!
- Need to consider relativistic plasma effects, and radiative transfer effects, also gravitational effects.
- Atmospheric models are available.

8th Patras Workshop on Axions, WISPs, and WIMPs

GEMS

GEMS

Gravity and Extreme Magnetism SMEX

Opening the Frontier of X-ray Polarization to Probe the Mysteries of the Universe

8th Patras Workshop on Axions, WISPs, and WIMPs

GEMS

Gravity and Extreme Magnetism SMLX

Opening the Frontier of X-ray Polarization to Probe the Mysteries of the Universe

8th Patras Workshop on Axions, WISPs, and WIMPs

- MWDs can be employed to put strong constraints on the properties of ALPs.
- These constraints can possibly be improved by simulating the effects of the atmosphere in greater detail.
- Can also study other particles that are similar in their production mechanisms to ALPs, such as Chameleons, etc. (See Konstantin Zioutas talk)
- Polarization studies of strongly magnetized NSs can help to constrain ALP properties even further.