The LUX Dark Matter Experiment

Dan McKinsey LUX Co-Spokesperson Yale University

8th Patras Workshop on Axions, WIMPs, and WISPs, July 18th, 2012

Xenon as a WIMP Target

Inert

- High density (3g/cm³ for liquid)
- High A² increases spin-independent cross-section
- Some isotopes sensitive to spin-dependent interactions
- Bright scintillator with fast (~ns) response
- High electron mobility
- Long ionization drift lengths (several meters) demonstrated
- No long-lived radioactive isotopes
- Low cost (~\$1000/kg) and readily available in large quantities Easy to scale

Direct WIMP Detection with Liquid Xenon

Goal: observe recoils between a WIMP and a target nucleus Equation for WIMP interaction cross section

$$\frac{dN}{dE_R} \propto \left(\frac{e^{-E_R/(E_0 r)}}{E_0 r}\right) \cdot \left(F^2(E_R) \cdot I\right)$$

(for S.I. interactions)

Recoil energy deposited in three channels: Scintillation (photons) Ionization (charge) Heat (phonons)

 $I \propto A^2$

LUX is a two-phase xenon WIMP detector

The LUX Detector

The LUX Collaboration

Brown

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman **Carlos Hernandez Faham** David Malling **James Verbus**

FI

Case Western

PI, Professor Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Professor PI, Professor

Postdoc

Postdoc

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Research Associate Professor

Postdoc

Thomas Shutt
Dan Akerib
Mike Dragowsky
Tom Coffey
Carmen Carmona
Karen Gibson
Adam Bradley
Patrick Phelps
Chang Lee
Kati Pech
Tim Ivancic

University of Rochester

Frank Wolfs	PI, Professor
Wojtek Skutski	Senior Scientist
Eryk Druszkiewicz	Graduate Studen
Mongkol Moongweluwan	Graduate Studen

Lawrence Livermore

Adam Bernstein	PI, Leader of Adv. Detectors Group	
Dennis Carr	Mechanical Technician	
Kareem Kazkaz	Staff Physicist	
Peter Sorensen	Staff Physicist	
John Bower	Engineer	
SD School of Mines		

PI, Professor

Xinhua Bai

U.	Universitv	of South	Dakota
anio of South Deletes	•••••	••••••	

Dongming Mei	PI, Professor
Chao Zhang	Postdoc
Dana Byram	Graduate Student
Chris Chiller	Graduate Student
Angela Chiller	Graduate Student

University of Maryland

Carter Hall	PI, Professor
Attila Dobi	Graduate Student
Richard Knoche	Graduate Student
Texas A&M	
James White	PI, Professor
Robert Webb	Professor
Rachel Mannino	Graduate Student
Clement Sofka	Graduate Student

UC Davis

Bob Jacobsen

Yale

David Taylor

Mia ihm

min

PI, Professor
Professor
Professor
Senior Engineer
Senior Machinist
Postdoc
Postdoc
Graduate Student

Lawrence Berkeley + UC Berkeley

PI, Professor Engineer Graduate Student

Daniel McKinsey	PI, Professor
Peter Parker	Professor
James Nikkel	Research Scientist
Sidney Cahn	Lecturer/Research Scientist
Alexey Lyashenko	Postdoc
Ethan Bernard	Postdoc
Markus Horn	Postdoc
Blair Edwards	Postdoc
Nicole Larsen	Graduate Student
Evan Pease	Graduate Student
Brian Tennyson	Graduate Student

UC Santa Barbara

PI, Professor Harry Nelson Mike Witherell Professor Dean White Engineer Susanne Kyre Engineer Imperial College London Imperial College London

Henrique Araujo PI, Senior Lecturer **Tim Sumner** Professor Alastair Currie Postdoc X

University of Edinburgh

Alex Murphy PI, Reader Lea Reichhart Graduate student

Chamkaur Ghag

University College London

PI, Lecturer

LIP Coimbra

ISabel Lopes	Р
Jose Pinto da Cunha	A
Vladimir Solovov	S
Luiz de Viveiros	Р
Alexander Lindote	P
Francisco Neves	P
Claudio Silva	Р

PI, Professor	
Assistant Professor	
Senior Researcher	
Postdoc	
Postdoc	
Postdoc	
Postdoc	

Sanford Underground Research Facility (SURF)

~10⁷ fold muon flux suppression

Backgrounds in LUX

Davis Cavern at Homestake Mine is 4850' below the surface

Reduces cosmic ray flux by 10⁷

300 ton water shield: Gamma suppression: ~10⁷ Neutron suppression (>10 MeV): ~10³ Neutron suppression (<10 MeV): <10⁹

Self-Shielding:

Continuous purge of internals limits Rn exposure Kr removed using a charcoal column Internal background dominated by PMTs

LUX Surface Run

- Stable cryogenic operation for > 100 days
 - Ended on Feb 2012, detector being moved underground
- First successful use of technologies proposed for tonne-scale detectors:
 - Biggest double phase Xe detector in operation:
 350 kg, 122 PMTs
 - Low background Ti vessel, < 0.2 mBq/kg (arXiv:1112.1376)
 - Thermosyphon cooling
 - High flow Xe circulation (> 30 slpm)
 - Full scale deployment in water tank

9

Hamamatsu R8778 PMTs

- < 9.5 mBq ²³⁸U / PMT
- < 2.7 mBq 232 Th / PMT
- < 66 mBq 40 K / PMT
- 33% quantum efficiency; 90% collection efficiency
- Gain = 3.3e6

2" diameter provides high surface area coverage Efficient detection of 178 nm light Operates in the LXe temperature range (165 - 180 K)

Field Rings

Circulation, Sampling and Storage

Circulation at 35 SLPM through purifier by diaphragm pump

Xenon recoverable to Storage and Recovery Vessel (SRV)

In-situ xenon sample RGA analysis¹ sensitivity: 0.7 ppb O₂ mol / mol, 0.5 ppt Kr mol / mol

1) A. Dobi et al., NIM-A, Vol. 675, 40-46 (2012) [arXiv:1109.1046]

LUX calibration system: source tubes

LUX Internal Sources

Tritium (half-life 12.3 yrs)
Injected as CH₃T
Beta source, up to 18.6 keV
Removed by purification system
S2/S1 ER band
Fills entire fiducial volume

LUX Surface run highlights

LUX Surface run highlights

In-situ residuals monitoring: O₂, N₂, He: <1 ppb, Kr < 200 ppb

System Upgrades/Fixes

- Disconnect in the internal circulation line repaired and made more robust.
- Cathode High Voltage feedthrough replaced with a new design.
 Feedthrough design tested up to 100 kV for over a month with no sign of breakdown.
- Drift field was limited to 120 V/cm by electroluminescence on the wires.
 Cathode grid replaced to mitigate the problem.
- Upgrades to gas system (including implementation of pump safety features).
- The single failed PMT was replaced.
- Sampling system upgraded for automated operation.

Current Status

 LUX was successfully moved UG last week!!

Current Status

Davis Cavern now fully occupied by LUX.
 Most major subsystems now underground.
 Installation of subsystems underway.
 Should be running by the end of the year.

Water tank / Veto

LUX Expected Sensitivity

What's next: LZ

- LZ = joint collaboration of LUX and ZEPLIN
- LZ (Sanford) ~7000 kg, with 5000 kg fiducial mass
- LUX infrastructure designed to accommodate LZ
- Liquid scintillator veto
- Construction 2014–2016, operation 2016...
- $\sigma_x = 2x10^{-48} \text{ cm}^2 \text{ in 3 years}$

Summary

- LUX demonstrated operation of all subsystems during surface run.
- Demonstrated xenon purification.
- Excellent light collection shown (8 phe/keVee)!
- Minor fixes and upgrades completed.
- LUX successfully moved underground!
- UG installation underway.
- Expect to be running by the end of the year.