Portals and the Hidden Sector with Neutrino Experiments

Brian Batell University of Chicago

8th Patras Workshop July 18 - 22, 2012 Chicago

- Motivation for a hidden sector
- Communicating with portals
- Basic experimental setup; Rate estimates
- Current limits/sensitivities:
 - Dark photons, axions, dark higgs, dark matter ...
- Outlook: prospects for Project X

A Light Hidden Sector?

- Light SM gauge singlet matter and new forces weakly coupled to ordinary matter largely unconstrained
- Singlets exist in SM: L, e_R, d_R, u_R, H, N
- Many possibilities for very weak interactions
- Could address various experimental & observational anomalies
- Predicted in many BSM & top-down scenarios
- Discover new principles in unexpected places!

Hidden particles

- Dark photons
- Dark scalars

- PNGBs
- Dark Matter

Portal

$$-\frac{\kappa}{2}B_{\mu\nu}V^{\mu\nu}$$

 $(\mu S + \lambda S^2) H^{\dagger} H$

LHN

 $g_{\chi}\phi\bar{\chi}\chi + g_q\phi\bar{q}q + \dots$

Proton Beam - Target Setup

Event rate estimates:

$$N_{\rm events} = N_{\rm prod} \times P_{\rm det}$$

Production:

1) Direct production: $N_{\text{prod}} = \sigma(pA \to YX) \times (N_{\text{POT}}n_TL_T)$

2) Decay of hadron: $N_{\text{prod}} = N_H \times Br(H \to Y + X)$

Detection (via decay to visible matter (e.g. leptons):

$$P_{\rm det} \sim \gamma^2 \frac{d\Omega_{\rm lab}}{4\pi} \left[\exp\left(-\frac{d}{\gamma v \tau}\right) - \exp\left(-\frac{d+R_d}{\gamma v \tau}\right) \right]$$

Experiments

Experiment	N _{POT}	Energy	d
CHARM	10^{18}	$400 \mathrm{GeV}$	480 m
LSND	10^{23}	$800 { m MeV}$	30 m
MiniBooNE	10^{21}	$9 \mathrm{GeV}$	540 m
NuMI/MINOS	10^{20}	$120 \mathrm{GeV}$	1 km

Dark Photons

Essig, Harnik, Kaplan, Toro

A' Decay Length $c\tau$

Dark Photons

LSND

Production via

$$p + A \to \pi^0 + X$$

followed by

$$\pi^0 \to \gamma V \to \gamma e^+ e^-$$

Essig, Harnik, Kaplan, Toro

BB, Pospelov, Ritz

Dark Higgs

BB, Pospelov, Ritz

LSND:
$$\pi_0 \rightarrow \gamma V h'$$

MiniBooNE: $\rho, \omega \rightarrow V h'$
NuMi/MINOS $pA \rightarrow V h'$
followed by

$$h' \to \ell^+ \ell^-$$

)

Pseudo-Nambu Goldstone Bosons

Essig, Harnik, Kaplan, Toro

PNGBs

CHARM, LSND, MiniBoone, MINOS

Production via

$$p + A \to a + X$$

followed by

$$a \to \ell^- \ell^+$$

Dark matter beam

Dark matter produced in decay of light mediator

 $\pi_0, \eta \to \gamma V$ $V \to \bar{\chi}\chi$

Neutral current-like event:

 $\chi e \to \chi e$

 $\chi N \to \chi N$

Dark matter beam

deNiverville, Pospelov, Ritz

MiniBooNE

Dark matter beam

deNiverville, McKeen, Ritz

Closing thoughts

- Weakly-coupled, light particles are a generic & exciting possibility for physics beyond the Standard Model
- Can be systematically explored via portals
- Proton Beam-target experiments offer complementary sensitivity to other probes
- Provide another physics rationale for the experimental program at the intensity frontier

Question:

What is the best way to utilize/expand existing experimental infrastructure for a more comprehensive physics program? Especially in the context of Project X?