Phenomenology of Direct WIMP Detection

An overview, not a review

Paolo Gondolo University of Utah

• Even if a new neutral particle is discovered at accelerators, one must still prove that it is the cold dark matter.

Example: active neutrinos are neutral but are hot dark matter.

- Indirect detection of dark matter is subject to poorly known astrophysical backgrounds, so it is hard to claim an unconditional discovery (exception may be gamma-ray line).
- Direct detection seems the best way to prove the existence of particle dark matter.

The principle

Rotation curve (Clemens 1985)

Our galaxy is inside a halo of dark matter particles

Image by R. Powell using DSS data

The principle

Dark matter particles that arrive on Earth scatter off nuclei in a detector

Dark matter particle

Low-background underground detector

Recent and near-future detectors

Background discrimination

Finding the dark matter particles is a fight against background

From Sanglard 2005

DM Direct Search Progress Over Time (2009)

Spin-independent (June 2012)

Updated from Anglehor et al 2011

 $1 \text{ pb} = 10^{-36} \text{ cm}^2$

Spin-dependent (June 2012)

05/09/11

Adapted from Danninger at TAUP 2011, Rott at Neutrino 2012

 $1 \text{ pb} = 10^{-36} \text{ cm}^2$

Coming up.....

- XMASS (800 kg LXe, Kamioka, 2011-)
- TEXONO/CDEX (I kg Ge, Jinping, 2011-)
- SuperCDMS (25kg Ge, Soudan, 2012-)
- LUX (350 kg LXe, Homestake, 2012-)
- DarkSide (50 kg LAr, Gran Sasso, 2012-)
- COUPP (60 kg CF₃I, SNOLab, 2012-)
- XENON-IT (I ton LXe, Gran Sasso, 2014-)
- DM-ICE, EURECA, DARWIN, PICO-LON and many many others

The annual modulation

Drukier, Freese, Spergel 1986

Annual modulation in WIMP flux and detection rate

$$S = S_0 + S_m \cos[\omega(t - t_0)]$$

The WIMP bulk velocity w.r.t. Earth modulates from ~232+15 km/s to ~232-15 km/s with a period of one year

The DAMA modulation

DAMA finds a yearly modulation as expected for dark matter particles

Bernabei et al 1997-2012

The CoGeNT modulation

The CoGeNT "irreducible excess" (*) modulates with a period of one year and a phase compatible with DAMA's annual modulation.

(*) Partly due to extra surface events

Aalseth et al 1106.0650

The CRESST unexplained excess

67 observed events cannot all be explained by background at 4σ

Adapted from Anglehor et al 2011

The CRESST unexplained excess

67 observed events cannot all be explained by background at 4σ

Limits from XENON-100, KIMS, CDMS,

Upper limit on WIMP-nucleon cross section from XENON-100 (model dependent)

3 events observed Aprile et al (XENON-100) 1104.2549 1.8±0.6 expected background

Limits from XENON-100, KIMS, CDMS,

KIMS: Csl scintillation detector (similar to DAMA)

Excludes inelastic dark matter
 Excludes 60 GeV/c² DAMA region

Without using detectors with large surface α background

Kim at TAUP 2011

Limits from XENON-100, KIMS, CDMS,

CoGeNT & DAMA vs. XENON, CDMS, et al

Collar Fields 1204.3559

CoGeNT & DAMA vs. XENON, CDMS, et al

10

- astrophysics model
 - local density, velocity distribution
- particle physics model
 - mass, cross section (dependence on spin, velocity, energy, couplings)
- detector response model
 - energy resolution, quenching factors, channeling fraction

0.4 0.8 1.2 1.6 2 2.4 2.8 energy (keVee)

Basic ideas

$$w' = m + \delta$$

$$M \checkmark V$$

$$M \checkmark V$$

Recoil energy $E = \frac{1}{2}MV^2$

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$

$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$
$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$
$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

From measured energy to recoil energy

$$\begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} = g(E_{\text{ee}}, E) \\ \hline E_{\text{nergy observed in detector, typically} \\ expressed in keV electron equivalent (keV_{ee}) \end{pmatrix}$$

Typically written as a single Gaussian with mean value

$$E_{\rm ee} = QE$$
Quenching factor

and standard deviation σ_E , but may be different.

<u>Channeling</u>. If an ion incident onto the crystal moves in the direction of a symmetry axis or plane of the crystal, it has a series of small-angle scatterings which maintains it in the open channel. The ion penetrates much further into the crystal than in other directions.

From Gemmel 1974, Rev. Mod. Phys. 46, 129

<u>Blocking</u>. If an ion originating at a crystal lattice site moves in the direction of a symmetry axis or plane of the crystal, there is a reduction in the flux of the ion when it exit the crystal, creating a "blocking dip".

From Gemmel 1974, Rev. Mod. Phys. 46, 129

Channeling in DAMA's Nal(TI) is much less than previously published

Bozorgnia, Gelmini, Gondolo 2010

T=293 K

Bozorgnia, Gelmini, Gondolo 2010

Compilation of measurements of the quenching factor Q in germanium

Lin et al (TEXONO) 2007

Compilation of measurements of the quenching factor Q in Nal(TI)

Chagani et al 0806.1916

This is where one can tweak to make DAMA and CoGeNT compatible.

Compilation of measurements of the light efficiency factor L_{eff} in liquid xenon

 $\overline{E_{\text{ee}}} = \frac{\text{S1}/L_y(122\text{keV}_{\text{ee}})}{Q = L_{\text{eff}}(S_{\text{nr}}/S_{\text{ee}})}$

Quenching factor

$$E_{\rm ee} = QE$$

This is where one can tweak to make experiments compatible.

Lin et al (TEXONO) 2007

Bozorgnia et al 2010

Aprile et al (XENON100), 1104.2549

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$

Astrophysics model

How much dark matter comes to Earth?

$$\begin{array}{c|c} \hline \text{Local halo density} \\ (\text{astrophysics}) = \rho \int_{v > v_{\min}(E)} \frac{f(\vec{v}, t)}{v} \, \mathrm{d}^{3}v \end{array}$$

Minimum speed to impart energy $E, \,\, v_{
m min}(E) = (ME/\mu + \delta)/\sqrt{2ME}$

Astrophysics model: local density

Galactic density profile from Aquarius simulations

Astrophysics model: velocity distribution The velocity factor $\eta(E,t) = \int_{v > v_{\min}(E)} \frac{f(\vec{v},t)}{v} d^3v$

- If f(E,t) is non-truncated Maxwellian in detector frame, $\eta(E,t)$ is exponential in E
- $\eta(E,t)$ depends on time (unless WIMPs move with detector)

Example: annual modulation $\eta(E,t) = \eta_0(E) + \eta_m(E) \cos \omega (t-t_0)$

Drukier, Freese, Spergel 1986

Inclusion of baryonic disk may lead to a dark disk

Read, Lake, Agertz, De Battista 2008

Ling 2009

Astrophysics model

The local density may be "known" within a factor of 2, but the velocity distribution is still an open question

Analytic models

Astrophysics-independent approach

E [keVee]

Fox, Kopp, Lisanti, Weiner 2011

200

600

Frandsen et al 2011

400

 $v_{\rm min} \, [{\rm km \ s^{-1}}]$

800

Wednesday, July 18, 12

counts/day/kg/keVee

Astrophysics-independent approach

Still depends on particle model

Analysis extends Fox, Liu, Weiner method to include energy response function

Gondolo Gelmini 1202.6359

$$\begin{pmatrix} \text{number of} \\ \text{events} \end{pmatrix} = (\text{exposure}) \times \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \otimes \begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix}$$
$$\begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} = \begin{pmatrix} \text{energy} \\ \text{response function} \end{pmatrix} \times \begin{pmatrix} \text{counting} \\ \text{acceptance} \end{pmatrix}$$
$$\begin{pmatrix} \text{recoil} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times (\text{astrophysics})$$

What force couples dark matter to nuclei?

$$\begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} = \frac{\sigma_{SI}(E) + \sigma_{SD}(E)}{2m\mu^2} \\ \hline \text{Reduced mass } \mu = mM/(m+M)$$

$$\sigma(E) = E_{\max} \frac{d\sigma}{dE} = \frac{2\mu^2 v^2}{m} \frac{d\sigma}{dE}$$

Exchange scalar, vector, pseudovector,?

- Supersymmetry
- Extra U(I) bosons
- Extended Higgs sector
- Effective operator approach

Scalar and vector currents give spin-independent terms

Example: neutralino

$$2f_p \simeq 2f_n \simeq \sum_q \langle \bar{q}q \rangle \left[-\sum_h \frac{g_{h\chi\chi}g_{hqq}}{m_h^2} + \sum_{\tilde{q}} \frac{g_{L\tilde{q}\chi q}g_{R\tilde{q}\chi q}}{m_{\tilde{q}}^2} \right]$$

Main uncertainty is $\langle m_s \bar{s} s \rangle$ (strange content of nucleon)

Axial and tensor currents give spin-dependent terms

$$\sigma_{SD}(E) = \frac{32\mu^2 G_F^2}{2J+1} \begin{bmatrix} a_p^2 S_{pp}(q) + a_p a_n S_{pn}(q) + a_n^2 S_{nn}(q) \end{bmatrix}$$

$$\overbrace{\text{Effective four-}\\particle vertices}_{p} \underbrace{\chi_{2\sqrt{2}G_F a_p \vec{\sigma}_p \cdot \vec{\sigma}_\chi}^{\chi}}_{p n n} \underbrace{\chi_{2\sqrt{2}G_F a_n \vec{\sigma}_n \cdot \vec{\sigma}_\chi}^{\chi}}_{n}$$

$$\overbrace{\chi_{2\sqrt{2}G_F a_p \vec{\sigma}_p \cdot \vec{\sigma}_\chi}^{\chi}}_{n}$$

Example: neutralino

$$2\sqrt{2}G_F a_p = \sum_q \Delta q \left[\frac{g_{Z\chi\chi}g_{Zqq}}{m_Z^2} + \sum_{\tilde{q}} \frac{g_{L\tilde{q}\chi q}^2 + g_{R\tilde{q}\chi q}^2}{m_{\tilde{q}}^2} \right]$$

Main uncertainty is nuclear spin structure functions S(q)

tions

Main uncertainty is nuclear spin structure functions S(q)

What particle model for light WIMPs?

What particle model for light WIMPs?

- It should have the cosmic cold dark matter density
- It should be stable or very long-lived ($\geq 10^{24}$ yr)
- It should account for the CoGeNT and DAMA modulations
- It should be compatible with collider, astrophysics, etc. bounds
- Ideally, it would justify apparent incompatibilities between direct detection experiments
- Ideally, it would explain some excessive emissions possibly observed in Galactic gamma-ray and radio maps

A few models of light dark matter*

Models		References
S U S Y	MSSM neutralino	; Griest 1988; Gelmini, Gondolo, Roulet 1989; Griest, Roszkowski 1991; Bottino et al 2002-11; Kuflik, Pierce, Zurek 2010; Feldman, Liu, Nath 2010; Cumberbatch et al 2011 ; Belli et al 2011;
	beyond-MSSM neutralino	Flores, Olive,Thomas 1990; Gunion, Hooper, McElrath 2005; Belikov, Gunion, Hooper,Tait 2011; Belanger, Kraml, Lessa 1105.4878;
	sneutrino	;An, Dev, Cai, Mohapatra 1110.1366; Cerdeno, Huh, Peiro, Seto 1108.0978;
minimalist dark matter (SM + real singlet scalar)		Veltman,Ydnurain 1989; Silveira, Zee 1985; McDonald 1994; Burgess, Pospelov, ter Veldhuis 2000; Davoudiasl, Kitano, Li, Murayama 2004; Andreas et al 2008-10; He,Tandean 1109.1267;
technicolor and alike		; Lewis, Pica, Sannino 1109.3513;
kinetically-mixed U(1)'		; Foot 2003-10; Kaplan et al 1105.2073; An, Gao 1108.3943; Fornengo, Panci, Regis 1108.4661; Andreas, Goodsell, Ringwald 1109.2869; Andreas 1110.2636; Feldman, Perez, Nath 1109.2901;
baryonic U(I)'		Gondolo, Ko, Omura; Cline, Frey 1109.4639;
dynamical DM		Dienes, Thomas 1106.4546, 1107.0721

* I-I0 GeV WIMP; very incomplete references.

So many theoretical models!

My suggestion: pay theorists more, so they do not need to work so much.